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Preface

Machine learning is a rapidly maturing field that aims to provide practical meth-
ods for data discovery, categorization and modelling. The Sheffield Machine
Learning Workshop, which was held 7–10 September 2004, brought together
some of the leading international researchers in the field for a series of talks and
posters that represented new developments in machine learning and numerical
methods.

The workshop was sponsored by the Engineering and Physical Sciences Re-
search Council (EPSRC) and the London Mathematical Society (LMS) through
the MathFIT program, whose aim is the encouragement of new interdisciplinary
research. Additional funding was provided by the PASCAL European Framework
6 Network of Excellence and the University of Sheffield. It was the commitment
of these funding bodies that enabled the workshop to have a strong program of
invited speakers, and the organizers wish to thank these funding bodies for their
financial support. The particular focus for interactions at the workshop was Ad-
vanced Research Methods in Machine Learning and Statistical Signal Processing.

These proceedings contain work that was presented at the workshop, and
ideas that were developed through, or inspired by, attendance at the workshop.
The proceedings reflect this mixture and illustrate the diversity of applications
and theoretical work in machine learning.

We would like to thank the presenters and attendees at the workshop for
the excellent quality of presentation and discussion during the oral and poster
sessions. We are also grateful to Gillian Callaghan for her support in the organi-
zation of the workshop, and finally we wish to thank the anonymous reviewers
for their help in compiling the proceedings.

July 2005 Joab Winkler
Neil Lawrence

Mahesan Niranjan
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Object Recognition via Local Patch Labelling

Christopher M. Bishop1 and Ilkay Ulusoy2

1 Microsoft Research,
7 J J Thompson Avenue,

Cambridge, UK
http://research.microsoft.com/∼cmbishop

2 METU, Computer Vision and Intelligent Systems Research Lab.,
06531 Ankara, Turkey

http://www.eee.metu.edu.tr/∼ilkay

Abstract. In recent years the problem of object recognition has received consid-
erable attention from both the machine learning and computer vision communi-
ties. The key challenge of this problem is to be able to recognize any member
of a category of objects in spite of wide variations in visual appearance due to
variations in the form and colour of the object, occlusions, geometrical transfor-
mations (such as scaling and rotation), changes in illumination, and potentially
non-rigid deformations of the object itself. In this paper we focus on the detec-
tion of objects within images by combining information from a large number of
small regions, or ‘patches’, of the image. Since detailed hand-segmentation and
labelling of images is very labour intensive, we make use of ‘weakly labelled’
data in which the training images are labelled only according to the presence or
absence of each category of object. A major challenge presented by this problem
is that the foreground object is accompanied by widely varying background clut-
ter, and the system must learn to distinguish the foreground from the background
without the aid of labelled data. In this paper we first show that patches which are
highly relevant for the object discrimination problem can be selected automati-
cally from a large dictionary of candidate patches during learning, and that this
leads to improved classification compared to direct use of the full dictionary. We
then explore alternative techniques which are able to provide labels for the indi-
vidual patches, as well as for the image as a whole, so that each patch is identified
as belonging to one of the object categories or to the background class. This pro-
vides a rough indication of the location of the object or objects within the image.
Again these individual patch labels must be learned on the basis only of overall
image class labels. We develop two such approaches, one discriminative and one
generative, and compare their performance both in terms of patch labelling and
image labelling. Our results show that good classification performance can be
obtained on challenging data sets using only weak training labels, and they also
highlight some of the relative merits of discriminative and generative approaches.

1 Introduction

The problem of object recognition has emerged as a ‘grand challenge’ for computer vi-
sion, with the longer term aim of being able to achieve near human levels of recognition
for tens of thousands of object categories under a wide variety of conditions. Many of

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 1–21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 C.M. Bishop and I. Ulusoy

the current approaches to this problem rely on the use of local features obtained from
small patches of the image. The motivation for this is that the variability of small patches
is much less than that of whole images and so there are much better prospects for gen-
eralization, in other words for recognizing that a patch from a test image is similar to
patches in the training images. However, the patches must be sufficiently variable, and
therefore sufficiently large, to be able to discriminate between the different object cat-
egories and also between objects and background clutter. A good way to balance these
two conflicting requirements is to determine the object categories present in an image
by fusing together partial ambiguous information from multiple patches. Probability
theory provides a powerful framework for combining such uncertain information in a
principled manner, and will form the basis for our research (the specific local features
that we use in this paper are described in Section 2.) Also, the locations of those patches
which provide strong evidence for an object also give an indication of the location and
spatial extent of that object.

In common with a number of previous approaches, we do not attempt to model
the spatial relationship between patches. Although such spatial information is certainly
very relevant to the object recognition problem, and its inclusion would be expected to
improved recognition performance for many object categories, its role is complemen-
tary to that of the texture-like evidence provided by local patches. Here we show that
local information alone can already give good discriminatory results.

A key issue in object recognition is the need for predictions to be invariant to a
wide variety of transformations of the input image due to translations and rotations of
the object in 3D space, changes in viewing direction and distance, variations in the
intensity and nature of the illumination, and non-rigid transformations of the object.
Although the informative features used in [13] are shown to be superior to generic
features when used with a simple classification method, they are not invariant to scale
and orientation. By contrast, generic interest point operators such as saliency [6], DoG
[7] and Harris-Laplace [9] detectors are repeatable in the sense that they are invariant to
location, scale and orientation, and some are also affine invariant [7,9] to some extent.
For the purposes of this paper we shall consider the use of invariant features obtained
from local regions of the image centered on interest points.

Fergus et al. [5] learn jointly the appearances and relative locations of a small set
of parts whose potential locations are determined by a saliency detector [6]. Since their
algorithm is very complex, the number of parts has to be kept small and the type of
detector they used is appropriate for this purpose. Csurka et al. [3] used Harris-Laplace
interest point operators [9] with SIFT features [7] for the purpose of multi class object
category recognition. Features are clustered using K-Means and each feature is labelled
according to the closest cluster centre. Histograms of feature labels are then used as
class-conditional densities. Since such interest point operators detect many points from
the background as well as from the object itself, the features are used collectively to
determine the object category, and no information on object localization is obtained. In
[4], informative features were selected based on information criteria such as likelihood
ratio and mutual information in which DoG and Harris-Laplace interest point detectors
with SIFT descriptors were compared. However, in this supervised approach, hundreds
of images were hand segmented in order to train support vector machine and Gaussian



Object Recognition via Local Patch Labelling 3

mixture models (GMMs) for foreground/background classification. The two detectors
gave similar results although DoG produces more features from the background. Fi-
nally, Xie and Perez [14] extended the GMM based approach of [4] to a semi-supervised
case inspired from [5]. A multi-modal GMM was trained to model foreground and
background features where some uncluttered images of foreground were used for the
purpose of initialization.

In this paper we develop several new approaches to object recognition based on fea-
tures extracted from local patches centered on interest points. We begin, in Section 3,
by extending the model of [3] which constructs a large dictionary of candidate fea-
ture ‘prototypes’. By using the technique of automatic relevance determination, our
approach can learn which of these prototypes are particularly salient for the problem of
discriminating object classes and can thereby give appropriately less emphasis to those
which carry little discriminatory information (such as those associated with background
clutter). This leads to a significant improvement in classification performance.

While this approach allows the system to focus on the foreground objects, it does
not directly lead to a labelling of the individual patches. We therefore develop new
probabilistic approaches to object recognition based on local patches in which the sys-
tem learns not only to classify the overall image, but also to assign labels to patches
themselves. In particular, we develop two complementary approaches one of which is
discriminative (Section 4) and one of which is generative (Section 5).

To understand the distinction between discriminative and generative, consider a sce-
nario in which an image described by a vector X (which might comprise raw pixel in-
tensities, or some set of features extracted from the image) is to be assigned to one of K
classes k = 1, . . . ,K . From basic decision theory [2] we know that the most complete
characterization of the solution is expressed in terms of the set of posterior probabilities
p(k|X). Once we know these probabilities it is straightforward to assign the image X
to a particular class to minimize the expected loss (for instance, if we wish to minimize
the number of misclassifications we assign X to the class having the largest posterior
probability).

In a discriminative approach we introduce a parametric model for the posterior prob-
abilities, and infer the values of the parameters from a set of labelled training data. This
may be done by making point estimates of the parameters using maximum likelihood,
or by computing distributions over the parameters in a Bayesian setting (for example
by using variational inference).

By contrast, in a generative approach we model the joint distribution p(k,X) of
images and labels. This can be done, for instance, by learning the class prior probabil-
ities p(k) and the class-conditional densities p(X|k) separately. The required posterior
probabilities are then obtained using Bayes’ theorem

p(k|X) =
p(X|k)p(k)∑
j p(X|j)p(j)

(1)

where the sum in the denominator is taken over all classes.
Comparative results from the various approaches are presented in Section 6. These

show that the generative approach gives excellent classification performance both for
individual patches and for the complete images, but that careful initialization of the
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training procedure is required. By contrast the discriminative approach, which gives
good results for image labelling but not for patch labelling, is significantly faster in
processing test images. Ideas for future work, including techniques for combining the
benefits of generative and discriminative approaches, are discussed briefly in Section 7.

2 Local Feature Extraction

Our goal in this paper is not to find optimal features and representations for solving a
specific object recognition task, but rather to fix on a particular, widely used, feature set
and use this as the basis to compare alternative learning methodologies. We shall also
fix on a specific data set, chosen for the wide variability of the objects in order to present
a non-trivial classification problem. In particular, we consider the task of detecting and
distinguishing cows and sheep in natural images.

We therefore follow several recent approaches [7,9] and use an interest point de-
tector to focus attention on a small number of local patches in each image. This is fol-
lowed by invariant feature extraction from a neighbourhood around each interest point.
Specifically we use DoG interest point detectors, and at each interest point we extract
a 128 dimensional SIFT feature vector [7] from a patch whose scale is determined
by the DoG detector. Following [1] we concatenate the SIFT features with additional
colour features comprising average and standard deviation of (R,G,B), (L, a, b) and
(r = R/(R +G +B), g = G/(R +G+ B)), which gives an overall 144 dimensional
feature vector. The result of applying the DoG operator to a cow image is shown in
Figure 1.

In this paper we use tn to denote the image label vector for imagen with independent
components tnk ∈ {0, 1} in whichk = 1, . . .K labels the class. Each class can be present
or absent independently in an image, and we make no distinction between foreground
and background classes within the model itself. Xn denotes the observation for image
n and this comprises as set of Jn patch vectors {xnj} where j = 1, . . . , Jn. Note that
the number Jn of detected interest points will in general vary from image to image.

On a small-scale problem it is reasonable to segment and label the objects present
in the training images. However, for large-scale object recognition involving thousands
of categories this will not be feasible, and so instead it is necessary to employ training
data which is at best ‘weakly labelled’. Here we consider a training set in which each
image is labelled only according to the presence or absence of each category of object
(in our example each image contains either cows or sheep).

3 Patch Saliency Using Automatic Relevance Determination

We begin by considering a simple approach based on [3]. In this method the features
extracted from all of the training images are clustered into C classes using the K-means
algorithm, after which each patch in each image is assigned to the closest prototype.
Each image n is therefore described by a fixed-length histogram feature vector hn of
length C in which element hnc represents the number of patches in image n which
are assigned to cluster c, where c ∈ {1, . . . , C} and n ∈ {1, . . . , N}. These feature
vectors are then used to construct a classifier which takes an image Xn as input, converts
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Fig. 1. Difference of Gaussian interest points with their local regions, in which the squares are
centered at the interest points and the size of the squares indicates the scale of the interest points.
The SIFT descriptors and colour features are obtained from these square patches Note that interest
points fall both on the objects of interest (the cows) and also on the background.

it to a feature vector hn and then assigns this vector to an object category. Here the
assumption is that each image belongs to one and only one of some number K of
mutually exclusive classes. In [3] the classifier was based either on naive Bayes or on
support vector machines.

Here we use a linear softmax model since this can be readily extended to determine
feature saliency as discussed shortly. Thus the model computes a set of outputs given by

yk(hn,w) =
exp(wT

k hn)∑
l exp(wT

l hn)
(2)

where k ∈ {1, . . . ,K}. Here the quantity yk(hn,w) which can be interpreted as the
posterior probability that image vector hn belongs to class k. The parameter vector
w = {wk} is found by maximum likelihood using iterative re-weighted least squares
[10]. We shall refer to this approach as VQ-S for vector quantized softmax. Results
from this method will be presented in Section 6.

An obvious problem with this approach is that the patches which contribute to the
feature vector come from both the foreground object(s) and also from the background.
Changes to the background cause changes in the feature vector even if the foreground
object is the same. Furthermore, some foreground patches might occur on objects from
different classes, and are therefore provide relatively little discriminatory information
compared to other patches which are more closely associated with particular object
categories.

We can address this problem using the Bayesian technique of automatic relevance
determination or ARD [8]. This involves the introduction of a prior distribution over
the parameter vector w in which each input variable hc has a separate hyperparameter
αc corresponding to the inverse variance (or precision) of the prior distribution of the
weights wc associated with that input, so that
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p(w|α) =
C∏

c=1

N (wc|0, α−1
c I). (3)

During learning the hyperparameters are updated by maximizing the marginal likeli-
hood, i.e. the probability of the training labels D given α in which w has been inte-
grated out, given by

p(D|α) =
∫

p(D|w)p(w) dw. (4)

This is known as the evidence procedure and the values of the hyperparameters
found at convergence express the relative importance of the input variables in deter-
mining the image class label. Specifically, the hyperparameters represent the inverse
variances of the weights, and so a large value of αc implies that the corresponding
parameter vector wc has a distribution which is concentrated around zero and so the
associated input variable hc has little effect in determining the output values yk. Such
inputs have low relevance. By contrast a high value of αc corresponds to an input hc

whose value plays an important role in determining the class label. The inclusion of
ARD leads to an improvement in classification performance, as discussed in Section 6.
We shall refer to this model as VQ-ARD.

With this approach we can rank the patch clusters according to their relevance. The
logarithm of the inverse of the hyperparameter αc is sorted and plotted in Figure 2.

Equivalently this can be plotted as a histogram of αc values, as shown in Figure 3.
It is interesting to note that in this problem the hyperparameter values form two groups
in which one group can loosely be considered as relevant and the other as not relevant,
so far as the discrimination task is concerned.

Figure 4 shows the properties of the most relevant cluster and of the least relevant
cluster, as well as that of an intermediate cluster, according to the ARD analysis based
on C = 100 cluster centers. Note that the images have been hand segmented in order to
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Fig. 2. The sorted values of the log variance (inverse of the hyperparameter α).
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Fig. 3. The histogram of the log variances

identify the foreground region. This segmentation is used purely for test purposes and
plays no role during training. The top row shows the features belonging to the worst
cluster, i.e. ranked 100, on a sheep image and on a cow image. This feature exists in
both classes and thus provides a little information to make a classification. The middle
row shows the locations of patches assigned to the cluster which is ranked 27, in which
we see that all of the patches belong to the background. Finally, the bottom row of the
figure shows the features belonging to the most relevant cluster, ranked 1, on the same
sheep and cow images. This feature is not observed on the sheep image but there are
several patches assigned to this cluster on the cow image. Thus the detection of this
feature is a good indicator of the presence of a cow.

It is also interesting to explore the behaviour of the two groups of clusters cor-
responding to the two modes in the distribution of hyper-parameter values shown in
Figure 3. Figure 5 shows examples of cow and sheep images in each case showing the
locations of the clusters associated with the two modes.

Although this approach is able to focuss attention on foreground regions, we have
seen that not all foreground patches have high saliency, and so this approach cannot
reliably identify regions occupied by the foreground objects. We therefore turn to the
development of new models in which we explicitly consider the identity of individual
patches and not simply their saliency for overall image classification. In particular the
hard quantization of K-means is abandoned in favour of more probabilistic approaches.
First we discuss a discriminative model and then we turn to a complementary generative
model.

4 The Discriminative Model with Patch Labelling

Since our goal is to determine the class membership of individual patches, we associate
with each patch j in an image n a binary label τnjk ∈ {0, 1} denoting the class k of
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Fig. 4. The top row shows example cow and sheep images, with the foreground regions seg-
mented, together with the locations of patches assigned to the least relevant (ranked 100) cluster
center. Similarly the middle row analogous results for a cluster of intermediate relevance (ranked
27) and the bottom row shows the cluster assignments for the most relevant cluster (ranked 1).
The centers of the squares are the locations of the patches from which the features are obtained
and the size of the squares show the scale of the patches.
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worst features worst features

best features best features

Fig. 5. Illustration of the behaviour of the two modes in the histogram of hyper-parameter values
seen in Figure 5. The left column shows a typical example from the sheep class while the right
column shows a typical example from the cow class. In the top row the squares denote the loca-
tions of interest points assigned to clusters in the left hand mode of the histogram corresponding
to low relevance clusters, while the bottom row gives the analogous results to the high relevance
model. The threshold between high and low was set by eye to ln(1/α) = −5. Note that the high
relevance clusters are associated predominantly with the foreground, while the low relevance
ones occur on both the foreground and the background.

the patch. For the models developed in this paper we shall consider these labels to be
mutually exclusive, so that

∑K
k=1 τnjk = 1, in other words each patch is assumed to be

either cow, sheep or background. Note that this assumption is not essential, and other
formulations could also be considered. These components can be grouped together into
vectors τ nj . If the values of these labels were available during training (correspond-
ing to strongly labelled images) then the development of recognition models would
be greatly simplified. For weakly labelled data, however, the {τnj} labels are hidden
(latent) variables, which of course makes the training problem much harder.

We now introduce a discriminative model, which corresponds to the directed graph
shown in Figure 6. Consider for a moment a particular image n (and omit the index
n to keep the notation uncluttered). We build a parametric model yk(xj ,w) for the
probability that patch xj belongs to class k. For example we might use a simple linear-
softmax model with outputs

yk(xj ,w) =
exp(wT

k xj)∑
l exp(wT

l xj)
(5)
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JnJn
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�nj�nj

Fig. 6. Graphical representation of the discriminative model for object recognition.

which satisfy 0 � yk � 1 and
∑

k yk = 1. More generally we can use a multi-layer
neural network, a relevance vector machine, or any other parametric model that gives
probabilistic outputs and which can be optimized using gradient-based methods. The
probability of a patch label τ j is then given by

p(τ j |xj) =
K∏

k=1

yk(xj ,w)τjk (6)

where the binary exponent τjk simply pulls out the required term (since y0
k = 1 and

y1
k = yk).

Next we assume that if one, or more, of the patches carries the label for a particular
class, then the whole image will. For instance, if there is at least one local patch in the
image which is labelled ‘cow’ then the whole image will carry a ‘cow’ label (recall that
an image can carry more than one class label at a time). Thus the conditional distribution
of the image label, given the patch labels, is given by

p(t|τ ) =
K∏

k=1

⎡
⎣1−

J∏
j=1

[1− τjk]

⎤
⎦tk

⎡
⎣ J∏

j=1

[1− τjk]

⎤
⎦1−tk

. (7)

In order to obtain the conditional distribution p(t|X) we have to marginalize over
the latent patch labels. Although there are exponentially many terms in this sum, it can
be performed analytically for our model due to the factorization implied by the graph
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in Figure 6 to give

p(t|X) =
∑
τ

⎧⎨
⎩p(t|τ )

J∏
j=1

p(τ j |xj)

⎫⎬
⎭

=
K∏

k=1

⎡
⎣1−

J∏
j=1

[1− yk(xj ,w)]

⎤
⎦tk

⎡
⎣ J∏

j=1

[1− yk(xj ,w)]

⎤
⎦1−tk

. (8)

This can be viewed as a softened (probabilistic) version of the logical’OR’ function
[12].

Given a training set of N images, which are assumed to be independent, we can
construct the likelihood function from the product of such distributions, one for each
data point. Taking the negative logarithm then gives the following error function

E (w) = −
N∑

n=1

C∑
k=1

{tnk ln [1− Znk] + (1− tnk) lnZnk} (9)

where we have defined

Znk =
Jn∏
j=1

[1− yk (xnj ,w)] . (10)

The parameter vector w can be determined by minimizing this error (which corresponds
to maximizing the likelihood function) using a standard optimization algorithm such as
scaled conjugate gradients [2]. More generally the likelihood function could be used as
the basis of a Bayesian treatment, although we do not consider this here.

Once the optimal value wML is found, the corresponding functions yk(x,wML)
for k = 1, . . . ,K will give the posterior class probabilities for a new patch feature
vector x. Thus the model has learned to label the patches even though the training data
contained only image labels. Note, however, that as a consequence of the noisy ‘OR’
assumption, the model only needs to label one foreground patch correctly in order to
predict the image label. It will therefore learn to pick out a small number of highly
discriminative foreground patches, and will classify the remaining foreground patches,
as well as those falling on the background, as ‘background’ meaning non-discriminative
for the foreground class. This will be illustrated in Section 6.

5 The Generative Model with Patch Labelling

Next we turn to a description of our generative model, whose graphical representation is
shown in Figure 7. The structure of this model mirrors closely that of the discriminative
model. In particular, the same class-label variables τnj are associated with the patches
in each image, and again these are unobserved and must be marginalized out in order to
obtain maximum likelihood solutions.

In the discriminative model we represented the conditional distribution p(t|X) di-
rectly as a parametric model. By contrast in the generative approach we model p(t,X),
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Fig. 7. Graphical representation of the generative model for object recognition.

which we decompose into p(t,X) = p(X|t)p(t) and then model the two factors sep-
arately. This decomposition would allow us, for instance, to employ large numbers of
‘background’ images (those containing no instances of the object classes) during train-
ing to determined p(X|t) without concluding that the prior probabilities p(t) of objects
is small.

Again, we begin by considering a single image n. The prior p(t) is specified in
terms of K parameters ψk where 0 � ψk � 1 and k = 1, . . . ,K , so that

p(t) =
K∏

k=1

ψtk

k (1 − ψk)1−tk . (11)

In general we do not need to learn these from the training data since the prior occur-
rences of different classes is more a property of the way the data was collected than
of the real world frequencies. (Similarly in the discriminative model we will typically
wish to correct for different priors between the training set and test data using Bayes’
theorem.)

The remainder of the model is specified in terms of the conditional probabilities
p(τ |t) and p(X|τ ). The probability of generating a patch from a particular class is
governed by a set of parameters πk, one for each class, such that πk � 0, constrained
by the subset of classes actually present in the image. Thus

p(τ j |t) =

(
K∑

l=1

tlπl

)−1 K∏
k=1

(tkπk)τjk . (12)

Note that there is an overall undetermined scale to these parameters, which may be
removed by fixing one of them, e.g. π1 = 1.
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For each class k, the distribution of the patch feature vector x is governed by a
separate mixture of Gaussians which we denote by φk(x; θk), so that

p(xj |τ j) =
K∏

k=1

φk(xj ; θk)τjk (13)

where θk denotes the set of parameters (means, covariances and mixing coefficients)
associated with this mixture model, and again the binary exponent τjk simply picks out
the required class.

If we assume N independent images, and for image n we have Jn patches drawn
independently, then the joint distribution of all random variables is

N∏
n=1

p(tn)
Jn∏
j=1

[p(xnj |τnj)p(τ nj |tn)] . (14)

Since we wish to maximize likelihood in the presence of latent variables, namely the
{τnj}, we use the EM algorithm. The expected complete-data log likelihood is given
by

N∑
n=1

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)]− ln

(
K∑

l=1

tnlπl

)}
. (15)

In the E-step the expected values of τnkj are computed using

〈τnjk〉 =
∑

{τ nj}
τnjkp(τ nj |xnj , tn) =

tnkπkφk(xnj)
K∑

l=1

tnlπlφl(xnj)

. (16)

Notice that the first factor on the right hand side of (12) has cancelled in the evaluation
of 〈τnjk〉.

For the M-step we first set the derivative with respect to one of the parameters πk

equal to zero (no Lagrange multiplier is required since there is no summation constraint
on the {πk}) and then re-arrange to give the following re-estimation equations

πk =

⎡
⎣ N∑

n=1

Jntnk

(
K∑

l=1

tnlπl

)−1
⎤
⎦−1

N∑
n=1

Jn∑
j=1

〈τnjk〉. (17)

Since these represent coupled equations we perform several (fast) iterations of these
equations before proceeding with the next EM cycle (note that for this purpose the
sums over j can be pre-computed since they do not depend on the {πk}).

Now consider the optimization with respect to the parameters θk governing the
distribution φk(x; θk). The dependence of the expected complete-data log likelihood
on θk takes the form

N∑
n=1

Jn∑
j=1

〈τnjk〉 lnφk(xnj ; θk) + const. (18)
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This is easily maximized for each class k separately using the EM algorithm (in an
inner loop), since (18) simply represents a log likelihood function for a weighted data
set in which patch (n, j) is weighted with 〈τnjk〉. Specifically, we use a model in which
φk(x; θk) is given by a Gaussian mixture distribution of the form

φk(x; θk) =
M∑

m=1

ρkmN (x|μkm,Σkm). (19)

The E-step is given by

γnjkm =
ρkmN (xnj |μkm,Σkm)∑

m′ ρkm′N (xnj |μkm′ ,Σkm′)
(20)

while the M-step equations are weighted by the coefficients 〈τnjk〉 to give

μnew
km =

∑
n

∑
j〈τnjk〉γnjkmxnj∑

n

∑
j〈τnjk〉γnjkm

Σnew
km =

∑
n

∑
j〈τnjk〉γnjkm(xnj − μnew

km )(xnj − μnew
km )T∑

n

∑
j〈τnjk〉γnjkm

ρnew
km =

∑
n

∑
j〈τnjk〉γnjkm∑

n

∑
j〈τnjk〉

.

If one EM cycle is performed for each mixture model φk(x; θk) this is equivalent
to a global EM algorithm for the whole model. However, it is also possible to perform
several EM cycle for each mixture model φk(x; θk) within the outer EM algorithm.
Such variants yield valid EM algorithms in which the likelihood never decreases.

The incomplete-data log likelihood can be evaluated after each iteration to ensure
that it is correctly increasing. It is given by

N∑
n=1

Jn∑
j=1

{
ln

(
K∑

k=1

tnkπkφk(xnj)

)
− ln

(
K∑

l=1

tnlπl

)}
.

Note that, for a data set in which all tnk = 1, the model simply reduces to fitting a
flat mixture to all observations, and the standard EM is recovered as a special case of
the above equations.

This model can be viewed as a generalization of that presented in [14] in which
a parameter is learned for each mixture component representing the probability of that
component being foreground. This parameter is then used to select the most informative
N components in a similar approach to [4] and [13] where the number N is chosen
heuristically. In our case, however, the probability of each feature belonging to one of
the K classes is learned directly.

Inference in the generative model is more complicated than in the discriminative
model. Given all patches X = {xj} from an image, the posterior probability of the
label τ j for patch j can be found by marginalizing out all other hidden variables
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p (τ j |X) =
∑
t

∑
τ /τ j

p (τ ,X, t)

=
∑
t

p (t)
1(∑K

l=1 πltl

)J

K∏
k=1

(πktkφk (xj))
τjk
∏
i�=j

[
K∑

k=1

πktkφk (xi)

]
(21)

where τ = {τ j} denotes the set of all patch labels, and τ/τ j denotes this set with
τ j omitted. Note that the summation over all possible t values, which must be done
explicitly, is computationally expensive.

For the inference of image label we require the posterior probability of image label
t, which can be computed using

p (t|X) ∝ p (X|t) p (t) (22)

in p(t) is computed from the coefficients {ψk} for each setting of t in turn, and p (X|t)
is found by summing out patch labels

p (X|t) =
∑
τ

J∏
j=1

p (X, τ j |t) =
Jn∏
j=1

∑K
k=1 tkπkφk (xj)∑K

l=1 tlπl

. (23)

6 Results

In this study, we have used a test bed of weakly labelled images each containing either
cows or sheep, in which the animals vary widely in terms of number, pose, size, colour
and texture. There are 167 images in each class, and 10-fold cross-validation is used
to measure performance. For the discriminative model we used a linear network of
the form (5) with 144 inputs, corresponding to the 144 features discussed in Section 2
and 3 outputs (cow, sheep, background). We also explore two-layer non-linear networks
having 50 hidden units with ‘tanh’ activation functions, and a quadratic regularizer with
hyper-parameter 0.2. For the generative model we used a separate Gaussian mixture for
cow, sheep and background, each of which has 10 components with diagonal covariance
matrices.

Initial results with the generative model showed that with random initialization of
the mixture model parameters it is incapable of learning a satisfactory solution. We
conjectured that this is due to the problem of multiple local maxima in the likelihood
function (a similar effect was found by [14]). To test this we used some segmented im-
ages for initialization purposes (but not for optimization). 30 cow and 30 sheep images
were hand-segmented, and features belonging to each class were clustered using the
K-means algorithm and the component centers of a class mixture model were assigned
to the cluster centers of the respective class. The mixing coefficients were set to the
number of points in the corresponding cluster divided by the total number of points in
that class. Similarly, covariance matrices were computed using the data points assigned
to the respective center.

In the test phase of both discriminative and generative models, we input the patch
features to the models and obtain the posterior probabilities of the patch labels as the
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outputs using (5) for discriminative model and (21) for the generative model. The pos-
terior probability of the image label is computed as in (8) for the discriminative model
and (22) for the generative case. We can therefore investigate the ability of the two
models both to predict the class labels of whole images and of their constituent patches.
The latter is important for object localization.

The overall correct rates of object recognition, i.e. image labelling, is given in Ta-
ble 1 for the VQ-S, VQ-ARD, linear discriminative (D-L), nonlinear discriminative
(D-NL) and generative (G) models.

Table 1. Overall correct rates

VQ-S VQ-ARD D-L D-NL G
80% 92% 82.5% 87.2% 97%

Table 2. Patch labelling scores

Class D-BG D-FG G-BG G-FG
Cow 99% 17% 82% 68%

Sheep 99% 5% 52% 82%

It is also interesting to investigate the extent to which the discriminative and gen-
erative models correctly label the individual patches. In order to make a comparison in
terms of patch labelling we used 30 hand segmented images for each class. In Table 2
patch labelling scores for foreground (FG) and background (BG) for discriminative and
generative models are given. Various thresholds are used on patch label probabilities in
order to produce ROC curves for the generative model and the non-linear network ver-
sion of the discriminative model, as shown in Figure 8. We also plot the ROC curve for
the generative model when random initialization is performed to show the importance
of initialization for such models. As already noted, the discriminative model finds a
small number of highly discriminative foreground patches, and labels all other patches
as background, whereas the generative model must balance the accurate labelling of
both foreground and background patches. Some examples of patch labelling for test
images are given in Figure 9 for cow images and in Figure 10 for sheep images.

There is a huge difference between discriminative and generative models in terms
of speed. The generative model is more than 20 times slower than the discriminative
model in training and more than 200 times slower in testing. Typical values for the
duration of a single cycle and the total duration of training and testing are given, for a
Matlab implementation, in Table 3.

7 Discussion

In this paper we have introduced and compared a variety of local patch-based models
for object recognition. We have shown that automatic relevance determination allows
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Fig. 8. ROC curves of patch labelling

Table 3. Typical values for speed (sec)

Model Single train cycle Total training Testing
D-L 3 510 0.0015

D-NL 5 625 0.0033
G 386 15440 0.31

a system to learn which features are most salient in determining the present of an ob-
ject. We have also introduced novel discriminative and generative models which have
complementary strengths and limitations, and shown that the discriminative model is
capable of fast inference, and is able to focus on highly informative features, while
the generative model gives high classification accuracy, and also has some ability to
localize the objects within the image. However, the generative model requires careful
initialization in order to achieve good results.

One major potential benefit of the generative model is the ability to augment the la-
belled data with unlabelled data. Indeed, a combination of images which are unlabelled,
weakly labelled (having image labels only) and strongly labelled (in which patch labels
are also provided as well as the image labels) could be used, provided that all missing
variables are ‘missing at random’.

Another significant potential advantage of generative models is the relative ease
with which invariances can be specified, particularly those arising from geometrical
transformations. For instance, the effect of a translation is simply to shift the pixels.
By contrast, in a discriminative model ensuring invariance to the resulting highly non-
linear transformations of the input variables is non-trivial. However, inference in such a
generative model can be very complex due to the need to determine values for the trans-
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Fig. 9. Cow patch labelling examples for discriminative model (left column) and generative model
(right column). Black, gray and white dots denote cow, background and sheep patches respec-
tively (and are obtained by assigning each patch to the most probable class).
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Fig. 10. Sheep patch labelling examples for discriminative model (left column) and generative
model (right column). Black, gray and white dots denote cow, background and sheep patches
respectively.
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formation parameters which have high posterior probability, and this generally involves
iteration. A discriminative model, on the other hand, is typically very fast once trained.

Our investigations suggest that the most fruitful approaches will involve some com-
bination of generative and discriminative models. Indeed, this is already found to be
the case in speech recognition where generative hidden Markov models are used to ex-
press invariance to non-linear time warping, and are then trained discriminatively by
maximizing mutual information in order to achieve high predictive performance.

One promising avenue for investigation is to use a fast discriminative model to lo-
cate regions of high probability in the parameter space of a generative model, which can
subsequently refine the inferences. Indeed, such coupled generative and discriminative
models can mutually train each other, as has already been demonstrated in a simple
context in [11].

One of the limitations of the techniques discussed here is the use of interest point
detectors that are not tuned to the problem being solved (since they are hand-crafted
rather than learned) and which are therefore unlikely in general to focus on the most
discriminative regions of the image. Similarly, the invariant features used in our study
were hand-selected. We expect that robust recognition of a large class of object cate-
gories will require that local features be learned from data.

Finally, for the purposes of this study we have ignored spatial information regarding
the relative locations of feature patches in the image. However, most of our conclusions
remain valid if a spatial model is combined with the local information provided by the
patch features.

Acknowledgements

We would like to thank Antonio Criminisi, Geoffrey Hinton, Fei Fei Li, Tom Minka,
Markus Svensen and John Winn for numerous discussions.

References

1. K. Barnard, P. Duygulu, D. Forsyth, N. Freitas, D. Blei, and M. I. Jordan. Matching words
and pictures. Journal of Machine Learning Research, 3:1107–1135, 2003.

2. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
3. G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with

bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV, 2004.
4. G. Dorko and C. Schmid. Selection of scale invariant parts for object class recognition. In

ICCV, 2003.
5. R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale

invariant learning. In CVPR, 2003.
6. T. Kadir and M. Brady. Scale, saliency and image description. International Journal of

Computer Vision, 45(2):83–105, 2001.
7. D. Lowe. Distinctive image features from scale invariant keypoints. International Journal of

Computer Vision, 60(2):91–110, 2004.
8. D. J. C. MacKay. Probable networks and plausible predictions – a review of practical

Bayesian methods for supervised neural networks. 6(3):469–505, 1995.



Object Recognition via Local Patch Labelling 21

9. K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors. Interna-
tional Journal of Computer Vision, 60:63–86, 2004.

10. I. T. Nabney. Netlab Algorithms for Pattern Recognition. Springer, 2004.
11. R. Neal P. Dayan, G. E. Hinton and R. S. Zemel. The helmholtz machine. Neural Computa-

tion, pages 1022–1037, 1995.
12. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net- works of Plausible Inference.

Morgan Kaufmann Publishers, 1998.
13. M. Vidal-Naquet and S. Ullman. Object recognition with informative features and linear

classification. In ICCV, 2003.
14. L. Xie and P. Perez. Slightly supervised learning of part-based appearance models. In IEEE

Workshop on Learning in CVPR, 2004.



Multi Channel Sequence Processing

Samy Bengio1 and Hervé Bourlard1,2
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Abstract. This paper summarizes some of the current research chal-
lenges arising from multi-channel sequence processing. Indeed, multiple
real life applications involve simultaneous recording and analysis of mul-
tiple information sources, which may be asynchronous, have different
frame rates, exhibit different stationarity properties, and carry comple-
mentary (or correlated) information. Some of these problems can already
be tackled by one of the many statistical approaches towards sequence
modeling. However, several challenging research issues are still open, such
as taking into account asynchrony and correlation between several feature
streams, or handling the underlying growing complexity. In this frame-
work, we discuss here two novel approaches, which recently started to be
investigated with success in the context of large multimodal problems.
These include the asynchronous HMM, providing a principled approach
towards the processing of multiple feature streams, and the layered HMM
approach, providing a good formalism for decomposing large and complex
(multi-stream) problems into layered architectures. As briefly reported
here, combination of these two approaches yielded successful results on
several multi-channel tasks, ranging from audio-visual speech recognition
to automatic meeting analysis.

1 Introduction

Given the proliferation of electronic recording devices (cameras, microphones,
EEGs, etc) with ever cheaper, and ever increasing processing speed, storage, and
bandwidth, together with the advances in automatically extracting and manag-
ing information recorded from these devices (such as speech recognition, face
tracking, etc), it becomes more and more feasible to simultaneously capture a
same event (or multiple events) with several devices, generating richer and more
robust sets of feature-streams.

Modeling such data coming from multiple channels (thus resulting in multiple
observation streams) is the goal of multi-channel sequence processing. Examples
of practical applications of this field are numerous, such as audio-visual speech
recognition, which can be more robust to ambient noise than only using an audio
stream. While several statistical models were presented recently in the literature
to cope with this growing amount of data accessible in parallel, several open
research problems are still to be solved. The purpose of this paper is thus to dis-
cuss some of these solutions, and specifically addressing two important issues, i.e.,
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asynchrony (when the feature streams are supposed to be piecewise stationary,
but with different stationary properties) and complexity (when it is furthermore
necessary to split the problem into several multi-stream sub-problems).

The outline of the paper is as follows. Section 2 justifies the need for multi-
channel sequence processing by discussing some of the numerous applications
that require such a framework. Section 3 reviews some of the current models
used in the literature. Section 4 shows that despite all these models, there is still
room for several improvements. Section 5 proposes a model to handle temporal
asynchrony between channels, while Section 6 proposes a principled approach to
control the complexity of multi-channel sequence processing through “optimal”
hierarchical processing.

2 Some Applications

Several tasks that are currently handled with only one stream of information
could in fact benefit from the addition of other parallel streams. Furthermore,
like in speech recognition (as well as video processing), it becomes more and
more usual to apply different feature extraction techniques to the same signal,
resulting in multiple feature streams

For instance, in audio-visual speech recognition, the audio signal is typically
complemented by the video recording of the face (and thus the lips) of the person.
It has already been shown [1,2] that if the resulting audio and visual feature
streams are properly modeled, such a multi-channel approach will significantly
help in recognizing the speech utterances under noise conditions. Similar settings
have also been used successfully for audio-visual person authentication [2]. In
fact, even using only one raw source of information can yield better results in a
multi-channel setting, e.g., using multiple sampling rates (multi-rate) or feature
extraction (multi-stream) techniques, as already demonstrated for the task of
speech recognition [3].

The field of multimedia analysis, which includes analysis of news, sports,
home videos, meetings, etc, is very rich and these events are often recorded
with at least two streams of information (audio and video) and sometimes more
(as for the meeting scenario described later in this paper), and may contain
complex human human interactions [4]. These multimedia documents also give
rise to other applications such as multimodal tracking of objects/humans [5].
Furthermore, as the quantity of such archived documents grows, it becomes
important to develop multimedia document retrieval systems [6,7] to find relevant
documents based not only on their textual content but also on their joint visual
and audio content.

Finally, numerous multi-channel sequence processing processing also appear
in the context wearable computers [8], aiming at assisting people in various every-
day activities (e.g., life saving, security, health monitoring, mobile web services)
by using small devices such as cameras, microphones (e.g., recording all what you
see and all what you hear), and multiple extra sensors (e.g., recording diverse
physiological signals), etc.
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In all the above applications, multi-channel processing presents several chal-
lenges. As already mentioned earlier, we first have to develop new sequence
recognition strategies accommodating multiple frame rates, asynchrony, correla-
tion between stream, etc. One solution to this problem, referred to as “Asynchro-
nous HMM” (AHMM) will be discussed in the paper (Section 5). Furthermore,
multi-channel processing may also impact differently the different levels of infor-
mation that we aim at extracting from the observation streams. While AHMM
can be well suited to classify sequential patterns into“low level”classes, they may
not be appropriate, or easily tractable (because of training data and complexity
issues), when one aims at extracting higher level information, such as semantic
classes. In this case, it may be necessary to use a “hierarchical HMM” approach,
where each “HMM layer”will use different types of multiple observation streams
(possibly resulting of the previous HMM layer). This layered approach will be
discussed in Section 6.

3 Notation and Models

Several models have already been proposed in the literature to handle multi-
channel applications. We briefly discuss here some of the most successful ap-
proaches, using a unified notation. Let us denote an observation sequence O of
T feature vectors as

O = (o1,o2, . . . ,oT ) , (1)

where ot is the vector of all multimodal features available at time t. In general,
such a set of features can be broken down into multiple streams (associated with
channels, modalities, or different pre-processing) m. We thus further define the
feature vector

om
t ∈ R

Nm , (2)

where Nm is the number of features for stream m, with 1 ≤ m ≤ M (the
total number of observation streams). Each observation sequence is typically
associated with a corresponding sequence of high level classes or “events”. For
instance, in speech or handwriting recognition, this would correspond to a se-
quence of words. The most successful types of model used to handle observation
sequences are all based on a statistical framework. In this context, the general
idea is to estimate, for each type of high level event vj ∈ V , the parameters
θj of a distribution over corresponding observation sequences p(O|θj), where O
would correspond to the event vj . The most well-known solution to efficiently
model such distributions is to use Hidden Markov Models (HMMs).

HMMs have been used with success for numerous sequence recognition tasks,
including speech recognition [9], video segmentation [10], sports event recogni-
tion [11], and broadcast news segmentation [12]. HMMs introduce a state variable
qt and factor the joint distribution of the observation sequence and the under-
lying (unobserved) HMM state sequence into two simpler distributions, namely
emission distributions p(ot|qt) and transition distributions p(qt|qt−1). Such fac-
torization assumes an underlying piece-wise stationary process (each stationary
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segment being associated with a specific HMM state), and yields efficient train-
ing algorithms such as the Expectation-Maximization (EM) algorithm [13] which
can be used to select the set of parameters θ∗j of the model corresponding to event
vj in order to maximize the likelihood of L observation sequences:

θ∗j = argmax
θj

L∏
l=1

p(Ol|θj). (3)

The success of HMMs applied to sequences of events is based on a careful de-
sign of sub-models (topologies and distributions) corresponding to lexical units
(phonemes, words, letters, events), and possibly semantic units (like the meet-
ing group actions discussed in Section 6.1). Given a training set of observation
sequences for which we know the corresponding labeling in terms of high level
events (but not necessarily the precise alignment), we create a new HMM for
each sequence as the concatenation of sub-model HMMs corresponding to the
sequence of high level events. This HMM can then be trained using EM, thus
adapting each sub-model HMM accordingly.

During testing, when observing a new observation sequence, the objective
is simply to find the optimal sequence of sub-model HMMs (representing high
level events) that could have generated the given observation sequence. Multiple
algorithms have been developed to efficiently solve this problem, even in large
search spaces, including stack decoders [14], or different approximations based
on the well-known Viterbi algorithm [15].

While HMMs can be used to model various kinds of observation sequences,
several extensions have been proposed to handle simultaneously multiple streams
of observations, all corresponding to the same sequence of events [3,1,16]. The
first and simplest solution is to merge all observations related to all streams
into a single stream (frame by frame), and to model it using a single HMM as
explained above. This solution is often called early integration. Note that in some
cases, when the streams represent information collected at different frame rates
(such as audio and video streams for instance), up-sampling or down-sampling
of the streams is first necessary in order to align the streams to a common frame
rate.

A better solution may be to use the multi-stream approach [17]. In this case,
each stream is modeled separately using its own HMM. For instance, if we con-
sider the modalities as separate streams, we would create one model θ∗m,j for
each event vj and stream m such that

θ∗m,j = arg max
θm,j

L∏
l=1

p(Om
l |θm,j), (4)

where Om
l is the lth observation sequence of stream m. When a new sequence of

events needs to be analyzed, a special HMM is then created, recombining all the
single stream HMM likelihoods at various specific temporal (“anchor”) points
automatically determined during training and decoding. Depending on these
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recombination points, various solutions appear. When the models are recombined
after each state, the underlying system is equivalent to making the hypothesis
that all streams are state-synchronous and independent of each other given a
specific HMM state. This solution can be implemented efficiently and has shown
robustness to various stream-dependent noises. The emission probability of the
combined observations of M streams in a given state of the model corresponding
to event vj at time t is estimated as:

p(ot|qt) =
M∏

m=1

p(om
t |qt, θm,j). (5)

One can see this solution as searching the best path into an HMM where each
state i would be a combination of all states i of the single stream HMMs1. A
more powerful recombination strategy enables some form of asynchrony between
the states of each stream: one could consider an HMM in which states would in-
clude all possible combinations of the single stream HMM states. Unfortunately,
the total number of states of this model would be exponential in the number
of streams, hence quickly intractable. An intermediate solution, which we call
composite HMM, considers all combinations of states in the same event only [18].
Hence, in this model, each event HMM j now contains all possible combinations
of states of the corresponding event vm,j of each stream HMM m. The total
number of states remains exponential but is more tractable, when the number
of states of each stream remains low as well as the number of streams. The
underlying hypothesis of this intermediate solution is that all streams are now
event-synchronous instead of state-synchronous.

Several other approaches to combine multiple streams of information have
been proposed in the literature, but generally suffer from an underlying train-
ing or decoding algorithm complexity which is exponential in the number of
streams. For instance, Coupled Hidden Markov Models (CHMMs) [19] can model
two concurrent streams (such as one audio and one video stream) with two con-
current HMMs where the transition probability distribution of the state variable
of each stream depends also on the value of the state variable of the other
stream at the previous time step. More formally, let q and r be respectively
the state variables of both streams, then CHMMs model transitions according
to p(qt=i|qt−1=j, rt−1=k) and p(rt=i|rt−1=j, qt−1=k). While the exact training
algorithm for such a model quickly becomes intractable when extended to more
than 2 streams, an approximate algorithm which relaxes the requirement to visit
every transition (termed the N-heads algorithm) was proposed in [19], and can
be tractable for a small number of streams.

Two additional approaches have been proposed recently, and will be the focus
of Sections 5 and 6. These are the Asynchronous HMM [20], that can handle
asynchrony between streams, and the Layered HMM [21,22] than can help in
constraining the model according to levels of prior knowledge.

1 Note that this solution forces the topology of each single stream to be the same.
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4 Challenges

While there are already several models proposed in the literature to cope with
multi channel sequence processing, we believe that there are still several research
challenges that have not been adequately addressed yet, including:

1. How to handle more than two streams? Most solutions that model the
joint probability of the streams need in general exponential resources with
respect to the number of streams, the number of states of each underlying
Markov chain, or the size of each stream. This practically means that han-
dling more than two streams is already a challenge. One possible alternative
is to limit the search space through the use of reasonable heuristics, which
should depend on a priori knowledge on the interdependencies of the streams.

2. How to handle learning in high dimensional spaces? The observation
space (the total number of observed features per time step) grows naturally
with the number of streams. Furthermore, it is often the case that the total
number of parameters of the model grows linearly or more with the num-
ber of observations (for instance if the conditional observation distributions
are modeled with Gaussian Mixture Models). Hence, one has to fight the
well-known curse of dimensionality [23].

3. How to handle long term temporal dependencies? This problem deals
with sequential data where one needs to relate information observed at time
t with information observed at time t + k where k is rather large. It has
been shown [24] that this becomes exponentially difficult with k when no
structural knowledge is built a priori in the model. Hence, in order for multi
channel processing to be successful, an appropriate structure is necessary.

4. Joint feature extraction and heterogeneity of sources. In current sys-
tems involving multiple streams of information, features used to represent
each stream are extracted independently. On the other hand, if one agrees
that there may be some correlation between the streams, one should there-
fore devise joint feature extraction techniques, which should then yield more
robust performance. However, what should we then do with streams of dif-
ferent nature (such as the slides of a presentation, together with the video
of the person performing the same presentation)?

5. How to handle different levels of a priori knowledge constraints?
It has been known for decades that in order to obtain good speech recogni-
tion performance, one has to constrain the recognition model with a good
language model, that only permits valid and probable sequences of words
to be recognized. The same idea should thus be applied to other domains,
such as videos, which contain rich high level information that should be con-
strained somehow. Several levels of description should thus be used in such
language model; for instance, a visual scene could be described by the pix-
els of the image, the persons present in the image, the action taking place,
the body language, etc. For each of these levels, a probabilistic model of
what is possible and what is not should therefore be trained. Furthermore,
one should devise multi channel language models in order to take into
account information coming from several streams at the same time.
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6. Asynchrony between streams. Let us consider the simplest multi-channel
case, with 2 streams, and let us assume that these 2 streams describe the
same sequence of 3 “events” (classes) A, B and C. Furthermore, let us as-
sume, as illustrated in Figure 1, that the best piecewise stationary alignment
of each stream to the sequence A-B-C would not coincide temporally with
each other (which we refer to “stream asynchrony”). In such a case (which
is discussed in more details in Section 5), a naive solution to try to model
the joint probability of the two streams (e.g., applying early integration)
would need an exponential number of states (with respect to the number
of streams), as depicted in the third line of Figure 1. A better solution, de-
picted in the fourth line of Figure 1, would stretch or compress the streams
along a single HMM model with the goal to re-align them during training
and decoding. Such a model is described in Section 5.

Stream 1

Stream 2

Asynchronous
Joint /

Naive
Integration

A B C

A

C

B C

B

A

A B

B

B

CB

C C

A

A

A B C

5 (d1+d2)−dim
states

3 (d1+d2)−dim
states

3 d1−dim states

3 d2−dim states

Fig. 1. Complexity issue with asynchronous streams

7. Available benchmark datasets for evaluation. One of the reasons of the
steady progress of speech recognition has been the ever increasing availabil-
ity of larger and larger realistic labeled datasets, and the yearly organization
of international competitions. It is well known that this is a key point for
progress in any scientific research field. However, to date, very little mate-
rial has been recorded and properly annotated for multi channel sequence
processing. Audio-visual speech recognition and person authentication are
probably the fields where most available databases can be found. What about
other scenarios, such as multimedia analysis, multimodal surveillance, etc?
In Section 6, we describe a first initiative of such a benchmark database
available for the meeting scenario.

5 Handling Asynchrony

Properly modeling asynchrony and correlation between multiple observation
streams is thus a challenging problem. However, as a matter of fact, there
are multiple evidences of real life applications involving several asynchronous
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streams. For instance, audio-visual speech recognition usually exhibits asyn-
chrony. Indeed, the lips of a person often start moving earlier than any sound
is uttered, mainly because the person is preparing to utter the sound. Another
example is the speaking and pointing scenario, where a person complement the
speech signal with a pointing gesture (to a point of interest). In this case, of
course, although the two streams are related to the same high-level event, the
pointing event will usually never occur exactly at the same time as the vocal
event. One last example of asynchrony: in a news video, there is almost always a
variable delay between the moment when the newscaster says the name of a pub-
lic personality and the moment when the personality’s picture actually appears
on the screen.

One can think of several other instances involving asynchrony between
streams, and there is thus a need to model this phenomenon in a principled
way. As described below, such a solution, referred to as Asynchronous HMM
was recently proposed.

5.1 The Asynchronous HMM

Let us consider the case where one is interested in modeling the joint proba-
bility of two asynchronous streams, denoted here O1 of length T1 and O2 of
length T2 with T2 ≤ T1 without loss of generality2. We are thus interested in
modeling p(O1,O2). Following the ideas introduced for HMMs, we represent
this distribution using a hidden variable Q which represents the (discrete) state
of the generating system, which in our case is synchronized with the longest
sequence O1.

Moreover, since we know that O2 is smaller than O1, let the system always
emit o1

t at time t but only sometimes emit o2
s at time t, with s ≤ t. Let us

define τt=s as the fact that o1
t is emitted at the same time as o2

s; τ can thus
be seen as the alignment between O1 and O2. Hence, an Asynchronous HMM
(AHMM) [20] models p(O1,O2, Q, τ).

Using these hidden variables, and using several reasonable independence as-
sumptions, we can factor the joint likelihood of the data and the hidden variables
into several simple conditional distributions:

– P (qt=i|qt−1=j), the probability to go from state j to state i at time t,
– p(o1

t ,o
2
s|qt=i), the joint emission distribution of o1

t and o2
s, while in state i

at time t,
– p(o1

t |qt=i), the emission distribution of o1
t only, while in state i at time t,

– P (τt=s|τt−1=s−1, qt=i,o1
1:t,o

2
1:s), the probability to emit on both sequences

while in state i at time t.

We showed in [20] that using these simple distributions, new algorithms could
be developed to (1) estimate the joint likelihood of the two streams, (2) train a

2 Since all the reasoning below can easily be generalized to sequences (even of the
same length) where the warping (stretching and compressing) can occur at different
instances in the different streams.
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model to maximize the joint likelihood of pairs of streams, and (3) jointly estimate
the best sequence of states Q and the best alignment between pairs of streams.

Furthermore, one can still constrain the model to consider only reasonable
alignments, e.g., integrating some minimum and maximum asynchrony between
the streams. Using this constraint and denoting Nq the number of states of the
model, the training and decoding complexity become O(N2

q · T1 · k), which is
only k times the usual HMM complexity.

5.2 Audio-Visual Speech Recognition

The proposed AHMM model was applied to several tasks, including audio-visual
speech recognition and speaker verification [2], as well multi-channel meeting
analysis [21]. We report here results on the M2VTS database [25] for the task of
audio-visual speech recognition, where the speech features where standard Mel-
Frequency Cepstral Coefficients (MFCCs), while the visual features where shapes
and intensities around the mouth region, obtained by lip tracking. In order to
evaluate the robustness of audio-visual speech recognition, various levels of noise
were injected into the audio stream during decoding, while training was always
done using clean audio only. The noise was taken from the Noisex3 database [26],
and added to the speech signal injected to reach segmental signal-to-noise ratios
(SNR) of 10dB, 5dB and 0dB.

Asynchronous HMMs were compared to classical HMMs using only the audio
stream, only the video stream, or both streams combined using the early integra-
tion scheme. Figure 2 presents the results in terms of Word Error Rate (WER), a
commonly used measure in the field of speech recognition,which takes into account
the number of insertions, deletions and substitutions4. As observed from Figure 2,
the AHMM consistently yielded lower WER as soon as the noise level was signifi-
cant. Actually, it did not yield significantly lower performance (using a 95% confi-
dence interval) than the video stream alone in case of very low (0dB) SNR, while
performing as well as the audio stream alone in case of “clean”speech (10dB).

An interesting side effect of the model is to provide the “optimal” alignment
between the audio and the video streams, as a by-product of the decoding process.
This is illustrated in Figure 3 showing the audio-visual stream alignment resulting
from the AHMM decoding of a specific digit sequence corrupted with 10dB Noisex
noise. As it can be seen, the alignment is far from being linear. This shows that
computing and maximizing the joint stream probability using AHMM appears
more informative than using a naive alignment and a normal HMM.

6 A Layered Approach
6.1 The Meeting Scenario

Automatic analysis of meetings (including, e.g., automatic modeling of human
interaction in meetings by modeling the joint behavior of participants through
3 We took the stationary speech noise.
4 Basically, the edit (Levenshtein) distance between the recognized and reference word

sequences.
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multiple audio and visual features) is a particularly challenging application of
multi-channel sequence processing. It is multimodal by nature (meetings can be
recorded with several cameras and microphones, as well as with other devices
capturing information coming from the white-board, the slide projector, etc) and
is also a rich case study of human interaction.

In [4], a principled approach to the automatic analysis of meetings was pro-
posed, defining meetings as continuous sequences of group actions chosen from a
predefined dictionary of actions (including, for instance, monologue, discussion,
white-board presentation, with or without note-taking, agreement/disagreement,
etc). This made the problem well suited for supervised learning approaches. The
group actions should be mutually exclusive, exhaustive, and as much as possi-
ble unambiguous to human observers. To this end, we have collected a corpus
of 60 short meetings of about 5 minutes each (30 for training, and 30 for test
purposes) in a room equipped with synchronized multi-channel audio and video
recorders. The resulting corpus, including annotation, is now publicly available
at http://mmm.idiap.ch5. Each meeting consisted of four participants seated
at a table in a typical workplace setting. Three cameras captured the partici-
pants, the projector screen and white-board. Audio was recorded using one lapel
microphone per participant and an eight-microphone array located in the center
of the table. The overall goal was to minimize the Action Error Rate (AER),
similarly to what is done in speech recognition with Word Error Rate (WER),
but over sequences of high level group actions. To this end, several extensions of
HMMs, including AHMMs, were tested and results are reported in [4].

More recently, we proposed a multi-layered solution [21,22] intended at sim-
plifying the complexity of the task, based on an approach presented in [16].

6.2 A Two-Layer Approach

Let us define two sets of actions, whether they are specific to individual partici-
pants or to the group. While the overall goal is at the level of group actions, we
believe that individual actions could act as a bridge between high level complex
group actions and low level features, thus decomposing the problem into stages,
or layers.

To this end, we defined the group action vocabulary set with the following
8 actions: discussion, monologue, monologue+note-taking, note-taking, presenta-
tion, presentation+note-taking, white-board, white-board+note-taking. Further-
more, we defined the individual action vocabulary with the following 3 actions:
speaking, writing, idle.

Obviously, individual actions should be easier to annotate in the corpus (as
being less ambiguous) and should also be easier to learn with some training
data, as they are obviously more related to low level features that can be ex-
tracted from the raw multiple channels. Furthermore, knowing the sequence of
individual actions of each participant, one should easily be able to infer the
5 In the framework of the AMI European Integrated Project (http://www.
amiproject.org) this corpus is now extended to about 100 hours of multimodal
meeting data.
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Fig. 4. A two-layer approach

underlying sequence of group actions. Thus considering every meeting partic-
ipant as a “multi-stream generator”, each of the participant’s streams should
be processed by a first layer of HMMs, and the resulting HMM’s outputs (likeli-
hoods/posteriors) will then be combined by a second HMM layer yielding, higher
level, group actions.

Figure 4 illustrates the overall strategy. Audio-visual features are first ex-
tracted for each of the meeting participants [21], complemented by more general
group-level features. An individual HMM (I-HMM) is then trained for each par-
ticipant, using the individual action vocabulary. To have these I-HMMs as much
“participant independent” as possible, all parameters are shared among all mod-
els, yielding up to 4 times more data to train the I-HMMs. Several models were
compared, including early integration, multi-stream, and asynchronous HMMs
(AHMM).

We then estimate for each participant i the posterior probability of each
individual task vi,j at each time step t given the individual observation sequence
up to time t, p(vi,j |oi

1:t). These posterior probabilities, together with group-level
features, are then used as observations for the second layer, the group HMM, (G-
HMM), which are trained on the group action vocabulary. Again, this G-HMM
was implemented in various flavors, including early integration, multi-stream and
asynchronous HMMs. Section 6.3 below further discusses this aspect and shows
how these (lower level) posterior probabilities can be estimated to guarantee
some form of “optimality”, while preserving maximum information (i.e., avoiding
local decisions) across the different layers.

Table 1 reports the AER performance achieved by the different systems. It
can be seen that (1) the two-layer approach always outperforms the single-layer
one, and (2) the best I-HMM model is the Asynchronous HMM, which probably
means that some asynchrony exists in this task, and is actually well captured by
the model.

6.3 General Multi-layered (Hierarchical) HMM Approach

As illustrated from the above meeting scenario, the complexity resulting from
the processing of multiple channels of information, in order to extract low-level
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Table 1. Action error rates (AER) for various systems applied to the meeting scenario

Method AER (%)
Visual only 48.20
Audio only 36.70

Single-layer Early Integration 23.74
Multi-Stream 23.13
Asynchronous 22.20
Visual only 42.45
Audio only 32.37

Two-layer Early Integration 16.55
Multi-Stream 15.83
Asynchronous 15.11

as well as high-level information (such as the analysis of multimodal meetings in
terms of high level meeting actions), is often such that it will often be necessary
to break down the problem in terms of multiple layers of sub-problems, probably
using different constraints and prior knowledge information sources. The layered
approach is one possible and principled solution to achieve this. Given a complex
task, the goal is then to break it down into several hierarchically embedded sub-
tasks, for which one can devise proper models (from enough training data), and
use adequate (level specific) constraints.

We recently proposed such an approach for the task of speech recognition [22],
where a general theoretical framework was proposed to compute low-level (e.g.,
phoneme) class posteriors, based on all the acoustic context, and to hierarchically
combine those posteriors to yield higher-level (e.g., sentence) posteriors. In this
approach, each layer is integrating its own prior constraints.

More precisely, a first layer, which could be an HMM or an AHMM, as in
the meeting scenario, or any other model such as an Artificial Neural Network
(ANN), is used to estimate posterior probabilities p(qt = i|O) of sub-classes i
(such as phonemes, for the case of speech recognition) at each time step t given
all the available information (for instance, all the acoustic sequence O). In HMM,
as well as in hybrid HMM/ANN systems, this posterior probability estimate is
given by the so-called γ(i, t) = p(qt = i|O), which can be obtained by running
and combining the so-called α and β recurrences through the appropriate HMM.
Ideally, this HMM should embed all known lexical constraints about legal and
probable sequences of phonemes. One should then use the resulting posterior
probabilities (of every sub-class at every time step) as input to the next layer
model, which would then estimate the posterior probabilities (again through new
γ’s) of higher level classes, such as words, constraining the underlying HMM
model with all known language constraints that pertains to legal and probable
sequences of words. In theory, this operation could be repeated up to the the
level of sentences, and even to the level of summarization, always using posterior
probabilities resulting from the previous layer as intermediate features.

Initial results on several speech tasks, as well as on the meeting task dis-
cussed previously, resulted in significant improvements. In [22], speech recogni-
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tion results where presented on Numbers’95 (speaker independent recognition of
free format numbers spoken over the telephone) and on a reduced vocabulary
version (1,000 words) of the DARPA Conversational Telephone Speech-to-text
(CTS) task, and both resulted in significant improvements.

7 Conclusion

This paper discussed several issues arising from the processing of complex multi-
channel data, including large multimodal problems (meeting data). More specifi-
cally, this paper focused on two important issues, namely stream asynchrony and
complexity of high-level decision processes. The proposed Asynchronous HMMs
(AHMM) actually maximize the likelihood of the joint observation sequences
through a single HMM, while also automatically allowing for stretching and/or
compressing of the different streams. However, in the case of very complex prob-
lems, using AHMMs is often not enough, and the problem needs to be broken
down into simpler processing blocks. A solution to this problem, referred to as
“multi-layered/hierarchical HMMs” (and where each layer can integrate different
levels of constraints and prior information) was also proposed and shown to be
effective in modeling the joint behavior of participants in multimodal meetings.
A full theoretical motivation of this approach is described in [22].
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Abstract. Survival analysis is a branch of statistics concerned with the
time elapsing before “failure”, with diverse applications in medical sta-
tistics and the analysis of the reliability of electrical or mechanical com-
ponents. In this paper we introduce a parametric accelerated life sur-
vival analysis model based on kernel learning methods that, at least in
principal, is able to learn arbitrary dependencies between a vector of ex-
planatory variables and the scale of the distribution of survival times.
The proposed kernel survival analysis method is then used to model the
growth domain of Clostridium botulinum, that is the food processing
and storage conditions permitting the growth of this foodborne micro-
bial pathogen, leading to the production of the neurotoxin responsible for
botulism. A Bayesian training procedure, based on the evidence frame-
work, is used for model selection and to provide a credible interval on
model predictions. The kernel survival analysis models are found to be
more accurate than models based on more traditional survival analysis
techniques, but also suggest a risk assessment of the foodborne botulism
hazard would benefit from the collection of additional data.

1 Introduction

Survival analysis is a field of classical statistics concerned with data recording
the time that elapses before the occurrences of a set of point events, known
as “failures”. Many applications of survival analysis arise in medical studies,
for example it might be of interest to model the length of time that patients
survive following each of a range of competing treatments for a given illness.
Survival analysis requires there to be a well-defined origin at which time t = 0,
an appropriate scale for measuring time and a unambiguous definition of failure.
In the case of our medical example, the origin is defined by the time of treatment,
the time scale is measured in days following treatment and failure defined by the
patient’s death. The remainder of this section is devoted to a brief overview
of parametric survival analysis methods, for a full introduction, see Cox and
Oakes [1].

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 37–55, 2005.
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Fig. 1. Example of (a) the survivor function, F (t), (b) the distribution of survival
times, f(t), and (c) hazard function, h(t), for a Weibull distribution with parameters
ψ = 2 and κ = 4

1.1 Parametric Survival Analysis

Parametric survival analysis aims to determine the optimal parameters of a fixed
distribution describing time to failure, T ,

F (t) = Pr(T ≥ t). (1)

Note this differs from the usual statistical convention where cumulative distrib-
ution functions are defined in terms of right continuity, i.e. F (t) = Pr(T ≤ t),
and hence the probability density function is defined as,

f(t) = −F ′(t). (2)

Another function of interest in survival analysis is the hazard function, given by

h(t) =
f(t)
F (t)

, (3)

which represents the instantaneous probability of failure at time t, given sur-
vival until time t. Examples of the survivor function, distribution of survival
times and hazard function for a Weibull distribution are shown in Figure 1. Any
parametric distribution over non-negative values of t may be used (in most ap-
plications it does not make sense to consider failure before time t = 0). Table 1
shows a number of statistical distributions commonly used in parametric sur-
vival analysis, where ψ represents the scale parameter of the distribution, and κ
is used to represent a shape parameter. The optimal parameters of the survival
distribution are traditionally found via a maximum likelihood approach. Given a
dataset D = {ti}�

i=1, recording the failure time for � discrete events, then assum-
ing that the data represents an independent and identically distributed (i.i.d.)
sample from some underlying distribution, the likelihood of the data is given by
the product of the density function over the observed data, i.e.

L =
n∏

i=1

f(ti). (4)

The optimal parameters are then determined by minimising the negative loga-
rithm of the likelihood function.
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Table 1. Statistical distributions commonly encountered in parametric survival
analysis

Distribution
Density

Function f(t)
Survivor

Function F (t)

Exponential ψ exp {−ψt} exp {−ψt}
Weibull κψ(ψt)κ−1 exp {− (ψt)κ} exp {− (ψt)κ}
Log-logistic κψκtκ−1 [1 + (ψt)κ]−2 [1 + (ψt)κ]−1

Gamma ψ(ψt)κ−1

Γ (κ) exp {−ψt} ∫∞
t

f(w)dw

1.2 Censoring of Data in Parametric Survival Analysis

In many applications of survival analysis it is not practical to observe every trial
until failure occurs, and instead a fixed observation period is imposed. Trials
where failure is not observed are said to have been “censored”. Returning to our
medical example, it is to be expected that not all of the patients will have died
by the time the observation period has ended (a period of 5 years is commonly
used in defining survival rates for medical procedures), other patients may have
died from totally unrelated causes, for instance road traffic accidents, or simply
may have moved away and are no longer in contact with the medical institution
conducting the study. Clearly, even though the failure time is unknown, censored
data should still be included in fitting the survival distribution, as they provide
information on an interval of time where failure was not observed. It is a simple
matter to incorporate censoring into the likelihood function. Uncensored data
are handled as before, for censored data, however, all that is known is that the
failure will occur at some time greater than the censoring time, so the likelihood
for censored observations is given by the survivor function, F (t). The likelihood
function then becomes

L =
∏
i∈U

f(ti)
∏
i∈C

F (ti). (5)

where U and C represent the index sets of uncensored and censored observations
respectively. Note that the censoring time may vary for each observation, or may
be constant for all trials.

A second type of censoring arises where trials are not continuously monitored
for failure, but instead are inspected periodically. In this case the exact time
of failure is again unknown, only the interval of time between inspections in
which the failure occurred, a situation known as interval censoring. Let T0 =
0, T1, T2, . . . , TN , TN+1 = ∞ represent the observation times, such that Ti <
Ti+1, ∀ i ∈ {0, 1, 2, . . . , N}, then the likelihood for interval censored data is
given by,



40 G.C. Cawley et al.

L =
n∏

i=1

[F (Tti−1)− F (Tti)] , (6)

where ti ∈ {1, 2, . . . , N + 1}, now indexes the observation time at which failure
was first observed in the ith trial; if no failure is actually observed, then failure
is assumed to occur in the interval (TN , +∞), and so ti = N + 1.

1.3 Accelerated Life Survival Analysis

In most applications of survival analysis, we seek to construct a model that
captures some underlying relationship between the distribution of survival times
and the values of a set of d explanatory variables, {xi ∈ X ⊂ Rd}�

i=1. In our
medical example, the explanatory variables might include information about
dosages, medical treatments applied and information about the patient that may
have a bearing on survival. The accelerated life model assumes that a baseline
survivor function F0 adequately describes the form of the distribution of survival
times, but that a function, ψ(x), is required to model variation in the scale of
the distribution according to the values of the explanatory variables,

F (t; x) = F0(ψ(x)t)

such that the probability density becomes

f(t; x) = ψ(x)f0(ψ(x)t)

and the hazard function becomes

h(t; x) = ψ(x)h0(ψ(x)t),

where f0 and h0 represent the corresponding baseline probability density and
hazard functions respectively. It is rarely appropriate for the function ψ(·) to
adopt negative values, and so the form most commonly encountered in classical
survival analysis is given by

ψ(x; w, b) = exp {w · x + b} ,

where the regression coefficients, (w, b) and any shape parameters of the baseline
survivor function are optimised by minimisation of the negative logarithm of the
likelihood function (4), (5) or (6). The accelerated life model is perhaps the
simplest form of covariate modelling used in survival analysis, but is adequate
in many applications.

1.4 Kernel Learning Methods in Parametric Survival Analysis

In this paper, we investigate the use of kernel learning methods to construct a
more general form of accelerated life survival analysis, such that the function
ψ(·) is able to model arbitrary, possibly non-linear dependencies between the
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explanatory variables and the scale of the survivor function. The “kernel trick”
allows a wide range of functional forms to be easily investigated, while the use
of regularisation provides a simple means of controlling model complexity and
so avoiding over-fitting. Section 2 describes a simple kernel method for covari-
ate modelling in accelerated life survival analysis. This is extended in section
3 to support Bayesian selection of the usual kernel and regularisation parame-
ters, based on the evidence framework of MacKay [2,3,4], which is also used to
provide a credible interval on model predictions. Section 4 describes the use of
conventional and kernel accelerated life survival analysis in modelling the growth
domain of the foodborne microbial pathogen Clostridium botulinum, that is the
food processing steps and incubation conditions that support growth. Accurate
modelling of the growth domain of microbial pathogens is a vital step in ensuring
the safety of food. Finally, the work is summarised in section 5.

2 Kernel Accelerated Life Survival Analysis

Kernel learning methods typically aim to construct a linear model ψ(x; w, b) =
s{w · φ(x) + b}, where s{·} is a scalar function, in a feature space F given by
a fixed transformation of the input space, φ(x) : X → F . The optimal model
parameters, (w, b), are given by the minimum of a regularised [5] point-wise loss
function,

L(w, b; ζ) =
�∑

i=1

C{ti, ψ(xi; w, b)}+
μ

2
‖w‖2, (7)

where μ is a regularisation parameter controlling the bias-variance trade-off [6]
and C{·, ·} is a convex loss function. Rather than specifying the transformation
φ(·) explicitly, a kernel function K : X × X → R is used, which defines the
inner product between vectors in the feature space F , i.e. K(x,x′) = φ(x) ·
φ(x′). K may be any kernel function, such that the Gram or kernel matrix,
K = [kij = K(xi,xj)]

�
i,j=1 is positive semi-definite [7,8]. For a more detailed

introduction to kernel learning methods, see Cristianini and Shawe-Taylor [9]
or Schölkopf and Smola [10]. In this study, we adopt the anisotropic Gaussian
radial basis function (RBF) kernel

K(x,x′) = exp

{
−

d∑
i=1

ηi|xi − x′
i|2
}

(8)

in which case F consists of one quadrant of an infinite-dimensional unit hyper-
sphere, and the polynomial kernel

K(x,x′) = (x · x′ + 1)p, (9)

in which case the feature space is the space of all monomials of order p or less.
Here, η and p are examples of kernel parameters, which must also be estimated
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from the training data. The representer theorem [11,12] states that the minimiser
of a loss function of the form of (7) can be written as

w =
�∑

i=1

αiφ(xi),

such that the output of the model is given by an expansion over evaluations of
the kernel function,

ψ(x; α, b) = s

{
�∑

i=1

αiK(xi,x) + b

}
. (10)

The point-wise regularised loss function (7) can then be written in terms of the
dual parameters as

L(α, b; ζ) =
�∑

i=1

C{ti, ψ(xi; α, b)}+
μ

2
αT Kα. (11)

As a concrete example, we will consider the case of accelerated life survival
analysis using the exponential survivor function and assuming simple right cen-
soring; the loss is then defined by the negative log-likelihood,

C{ti, ψi} =
{

ψiti − log{ψi} i ∈ U
ψiti i ∈ C ,

where ψi = ψ(xi; α, b). In this case, s(·) is taken to be the exponential function,
such that

log {ψ(x; α, b)} =
�∑

i=1

αiK(xi,x) + b. (12)

The optimal model parameters, ω = (α, b), can then be found straight-forwardly
using a simple second-order gradient descent optimisation procedure (Newton’s
method) [13]. Let g and A represent the gradient vector and Hessian matrix of
L with respect to the model parameters respectively,

g =
(
gi =

∂L

∂ωi

)�

i=1
and A =

[
aij =

∂2L

∂ωi∂ωj

]�

i,j=1
,

the model parameters are the iteratively optimised according to the following
update rule,

ωnew = ωold −A−1g.

If a more complex survivor function is required, for instance a Weibull or log-
logistic model, the additional shape parameter, κ, must also be estimated by
minimising the negative log-likelihood.
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2.1 Imposing Sparsity

The kernel accelerated life model (12) is normally fully dense in the sense that
all of the coefficients, α, assume non-zero values. This is undesirable as the
computational complexity of the training algorithm is O(�3) operations and has
memory requirements of order O(�2). The Gram matrix, K, for a radial basis
function kernel is at least in principle positive definite and of full rank, assuming
that xi = xj , ∀ i, j ∈ {1, 2, . . . , �} [14]; however it is possible for K to be nu-
merically rank-deficient. We therefore use the incomplete Cholesky factorisation
with symmetric pivoting, due to Fine and Scheinberg [15], to find the Cholesky
factor of K̂, a numerically full-rank symmetric sub-matrix of K [16]. Without
loss of generality, we assume that only the first N columns of K contribute
to forming K̂. The remaining columns of K are then linearly dependent, or
very close to being linearly dependent, on columns 1, 2, . . . , N , and can be safely
deleted prior to training without significantly affecting model performance [17].
We then obtain a sparse kernel model,

log {ψ(x; β, b)} =
N∑

i=1

βiK(xi,x) + b. (13)

Maximum likelihood estimates of the model parameters, ω = (β, b), are obtained
by minimising a regularised loss function,

L(β, b;μ) =
�∑

i=1

C{ti, ψ(xi; β, b)}+
μ

2
βT K̂β, (14)

again using Newton’s method. The degree of sparsity achieved depends on the
value(s) of the scale parameter(s) of the RBF kernel and on the number of input
features. Sparsity is greatest for very smooth kernels, and for a small number
of input features, as both of these factors tend to restrict the distribution of
training points over the unit hyper-sphere formed in the feature space.

2.2 Model Selection

The task of selecting the optimal values for kernel and regularisation parameters,
in this case η or p and μ respectively, is known as model selection. Rather than
performing model selection via lengthy manual trial-and-error experimentation,
we would prefer an automated model selection strategy that does not require sig-
nificant intervention by a skilled operator. Cross-validation [18] provides a simple
means of estimating the value of a given performance criterion on unseen data.
Under k-fold cross-validation, the training data are partitioned into k disjoint
sets. A model is trained using a combination of k−1 subsets and the test statistic
evaluated on the unused partition. This process is repeated for all k combinations
of k−1 subsets. The sum of the test statistics for each of the k trials is then taken
as an estimate of generalisation performance. The most extreme form of cross-
validation, where each partition contains only one pattern, i.e. k = �, is known
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as leave-one-out cross-validation [19]. In this study, the kernel and regularisa-
tion parameters are selected by minimising a 10-fold cross-validation estimate of
an appropriate negative log-likelihood statistic using the Nelder-Mead simplex
optimisation algorithm [20]. The leave-one-out cross-validation estimate is then
used for model comparison purposes.

3 Bayesian Kernel Survival Analysis

In this section, we apply the evidence framework of MacKay [2,3,4] to develop
a hierarchical Bayesian formulation of the sparse kernel accelerated life survival
analysis model. Minimising the regularised loss function (14) is equivalent to
maximising the posterior distribution

p(β|D;μ) =
p(D|β)p(β;μ)

p(D)
. (15)

Here p(D|β) represents the likelihood of the training data,

p(D|β) =
1
ZD

exp {−ED} ,

where ZD is an appropriate normalising constant and ED measures the “data
misfit”,

ED =
�∑

i=1

C{ti, ψ(xi; β, b)}.

For kernel survival analysis, the data misfit is simply the negative logarithm
of the likelihood given by (4), (5) or (6) depending on the censoring regime
in operation. The prior over model parameters, p(β;μ), is then a multivariate
Gaussian distribution,

p(β;μ) =
1

ZW
exp

{
−μ

2
EW

}
,

where again ZW is an appropriate normalising constant and EW is the regular-
isation term in the regularised loss function,

EW = βT K̂β.

Note that, unlike the weight decay prior normally encountered in Bayesian
treatments of multi-layer perceptron networks [21,2,3,4,22,23], the prior is non-
spherical. The Taylor expansion of L(β, b;μ) around the most probable value,
βMP, gives rise to familiar Gaussian approximation to the posterior distribution
over β, known as the “Laplace approximation”,

p(β|D) ≈ 1
Z∗ exp

{
−L

(
βMP

)
− 1

2
ΔβT AΔβ

}
, (16)

where Z∗ is an normalising constant, Δβ = β − βMP and A is the Hessian
of L(β, b; ζ) with respect to β evaluated at βMP. For further details, see e.g.
Bishop [22].
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3.1 The Evidence Approximation for μ

The evidence approximation [2,3,4] assumes that the posterior distribution for
the regularisation parameter, p(μ|D), is sharply peaked about its most probable
value, μMP, suggesting the following approximation to the posterior distribution
for β,

p(β|D) =
∫

p(β|μ,D)p(μ|D)dμ ≈ p(β|μMP,D).

Thus, rather than integrate out the regularisation parameter entirely (e.g. Bun-
tine and Weigend [21]), we simply proceed with the analysis using the regular-
isation parameter fixed at its most likely value. For a discussion of the validity
of this approach, see MacKay [24]. We seek therefore to maximise the posterior
distribution,

p(μ|D) =
p(D|μ)p(μ)

p(D)
.

If the prior, p(μ) is relatively insensitive to the value μ, then maximising the
posterior is approximately equivalent to maximising the likelihood term, p(D|μ),
known as the evidence for μ. Adopting the Gaussian approximation to the the
posterior for the model parameters, the log-evidence is given by

log p(D|μ) = −EMP
D − μEMP

W − 1
2

log |A|+ N

2
logμ. (17)

3.2 Update Formula for the Regularisation Parameter

As a consequence of the non-spherical prior over model parameters, the Hessian
matrix for a sparse kernel survival analysis model is of the form

A = H + μK̂,

where H is the Hessian of ED with respect to β. Unfortunately this complicates
the derivation of an efficient update formula used to select the best value for
the regularisation parameter, μ. We therefore seek to re-parameterise the model
such that the anisotropic Gaussian prior over the coefficients of the sparse ker-
nel expansion is replaced by an isotropic Gaussian prior over the transformed
parameters, i.e.

EW = βT K̂β = β̃
T
β̃,

where β̃ is the vector of transformed parameters. Let Ĝ represent the upper
triangular Cholesky factor [16] of the symmetric positive-definite matrix K̂, such
that K̂ = Ĝ

T
Ĝ. By inspection, the desired parameterisation is given then by

β̃ = Ĝβ =⇒ β = Ĝ
−1

β̃.

The optimisation criterion then becomes

L(β̃, b;μ) =
�∑

i=1

C
{
ti, ψ

(
xi; Ĝ

−1
β̃, b

)}
+

μ

2
β̃

T
β̃ (18)
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The Hessian of L with respect to β̃ is then of the form

Ã = H̃ + μI,

where H̃ is the Hessian of ED with respect to β̃. If the eigenvalues of H̃ are
λ1, λ2, . . . , λW , then the eigenvalues of Ã are (λ1 + μ), (λ2 + μ), . . . , (λW + μ).
The derivative of log |Ã| with respect to μ (assuming that the eigenvalues of H̃
are independent of μ) is then given by

d

dμ
log |Ã| = d

dμ
log

{
N∏

i=1

(λi + μ)

}
=

N∑
i=1

1
λi + μ

.

Setting the derivative of the log-evidence with respect to μ to zero, we have that

2μEMP
W = N −

N∑
i=1

μ

λi + μ
=

N∑
i=1

λi

λi + μ
= γ,

where γ is the number of well determined parameters in the model. This leads
to a simple update formula for the regularisation parameter:

μnew =
γ

2EMP
W

. (19)

The training procedure then alternates between updates of the primary model
parameters using the Newton’s method and updates of the regularisation para-
meter according to equation (19). In practise, rather than using the transformed
parameters only in computing the number of well-determined parameters, the
entire training procedure is most easily conducted in the transformed parame-
ters, β̃, and the original model parameters, β, reclaimed afterwards. The values
of kernel parameters can then be optimised by maximising the log-evidence for
model, Hi,

log p(D|Hi) = μMPEMP
W − EMP

D − 1
2

log |A|+ N

2
logμMP +

1
2

log
{

2
γ

}
, (20)

where in this case Hi specifies the kernel function (see MacKay [2] or Bishop
[22] for further details).

4 Modelling Growth Domain of Food Borne Microbial
Pathogens

Clostridium botulinum is an anaerobic bacterium that produces one of the most
powerful toxins known to science as a by-product of its growth processes. Inges-
tion of only 30ng of the toxin can result in severe illness and even death [25].
It is therefore vital that steps should be taken to ensure that the toxin is not
present in food. As C. botulinum spores are ubiquitous in the raw ingredients,
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food must be processed to ensure that all of these spores are destroyed, or so
that the spores are prevented from germinating, leading to cell division and sub-
sequent toxin production. Growth of C. botulinum is, in most cases, principally
dependent on environmental factors such as temperature, pH, NaCl concentra-
tion and gas atmosphere. It is important then to be able to define the “growth
domain”, that is the conditions under which the spores are able to germinate,
giving rise to toxin production. This is especially true in the case of minimally
processed chilled foods, as non-proteolytic C. botulinum is capable of growth and
toxin production at chill temperatures. The safety of these foods with respect to
non-proteolytic C. botulinum is likely to rely on a combination of heat treatment
and subsequent incubation at refrigeration temperatures (Lund and Peck [25],
Peck [26]). In this section, we describe a growth domain model for C. botulinum
based on Bayesian kernel accelerated life survival analysis.

4.1 The Dataset

The growth domain models for C. botulinum described here are based on the
dataset described in Fernández and Peck [27]. Tubes containing a sterile meat-
based medium (Peck et al. [28]), were inoculated with a suspension of the spores
of eight strains of non-proteolytic C. botulinum, at a final concentration of 106

spores per tube, and subjected to a range of heat treatments, shown in table 2.
The tubes were then cooled and incubated at temperatures of 5, 8, 12, 16 and
25◦C for 90 days. The temperature of the heat treatment applied is represented
by Tc and the duration by tc, Ti and t are used to represent the incubation
temperature and incubation time respectively. Five replicates were performed at
each incubation temperature, for each heat treatment regime. The tubes were
inspected daily for signs of growth, as indicated by obvious formation of gas,
during the early stages of incubation and every 2–3 days during later stages. At
the end of the experiment, samples from each heat treatment regime, showing
growth at the lowest incubation temperature and for the highest incubation
temperature that did not show growth, were tested for toxin (Peck et al. [28],
Stringer et al. [29], Carlin and Peck [30]). This type of dataset is known as time
to growth data, as the results are presented in terms of a table showing the
number of days elapsing before growth is first observed in each tube. Full details
of the experimental method are recorded in Fernández and Peck [27].

4.2 Objective Analysis of Model Performance

The first step in evaluating the kernel growth domain models is to compare sur-
vivor functions, censoring schemes, kernel functions and model selection strate-
gies. In this study, we consider the exponential, Weibull and log-logistic survivor
functions, with right censoring, where trials are censored only if no growth is
observed within the 90 day period of the experiment, and interval censoring
schemes. In this case, the tubes were not constantly monitored for growth, but
were inspected at irregular intervals, and so an interval censoring scheme is the
more intuitively appealing option as it incorporates the uncertainty relating to
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the exact time of failure in each trial. Linear (p = 1), quadratic (p = 2) and
cubic (p = 3) variants of the polynomial kernel were investigated, giving rise to
models with similar complexity to the polynomial regression models typically
used in classical survival analysis. The radial basis function kernel was also used
to determine whether the use of a more powerful regression component of the
model can be justified. Finally, three model selection strategies were evaluated:

– Bayesian - Both regularisation and kernel parameters are selected via min-
imisation of the negative logarithm of the Bayesian evidence, given by equa-
tions (17) and (20) respectively.

– Cross-validation - Both regularisation and kernel parameters selected via
minimisation of a 10-fold cross-validation estimate of the negative log-
likelihood, as described in section 2.2. Due to the strong correlation in time-
to-growth for trials sharing a common heat treatment and incubation tem-
perature, the five replicates for a given combination of heat treatment and
incubation temperature are always assigned to the same partition.

– Hybrid - The regularisation parameter, for which an efficient update for-
mula is available, is selected according to the Bayesian evidence (17), but the
kernel parameters chosen according to a 10-fold cross-validation estimate of
the negative log-likelihood.

As the experimental data resulted from a periodic inspection schedule, we
adopt a cross-validation estimate of the negative logarithm of the likelihood
assuming an interval censoring regime. As 10-fold cross-validation is used in
model selection, and since the dataset is quite small, a leave-one-experiment-out
cross-validation scheme is used for model comparison purposes, where at each
iteration, the test partition consists of the five replicates for a single combination
of heat treatment and incubation temperature. Table 3 shows the test statistic for

Table 2. Heat treatments applied to a meat-based medium containing spores of
Clostridium botulinum

Temperature (◦C) Duration (min)

70◦C 104.9 529.1 998.9
1596.3 2065.9 2544.5

75◦C 284.6 463.1 734.2
1071.5 1376.5 1793.0

80◦C 11.4 69.7 98.0
127.9 183.8 229.6
294.9 362.7

85◦C 23.3 35.7 52.0
57.8 83.8

90◦C 10.3 10.9 15.3
23.5 33.5
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a range of kernel functions, survival distributions and model selection strategies.
The results seem to justify use of a quadratic or cubic polynomial or radial
basis function kernel, rather than a simple linear model. The use of a two-
parameter Weibull or log-logistic survivor function, rather than the exponential
distribution, is also justified although the difference in performance between
two-parameter distributions is slight. An interval censoring scheme is marginally
better than simple right censoring in most cases. The Bayesian model selection
scheme generally favours somewhat overly-regularised models and so performs
rather worse than a 10-fold cross-validation scheme. This is possibly because the
level of Bayesian inference used to select the kernel parameters is based on several
simplifying approximations, which may significantly degrade performance. It is
argued in the next section that it is likely that insufficient data is available to
generate a truly reliable statistical model, and so there is also insufficient data
to unambiguously differentiate between relatively similar models based on an
objective performance criterion.

Table 3. Leave-one-experiment-out estimates of the negative log-likelihood of para-
metric accelerated life survival analysis models of the growth domain of C. botulinum,
based on kernel learning methods incorporating a range of survival distributions, kernel
functions and model selection procedures. Figures displayed in bold font represent the
best value in each column, underlined figures represent the best value in each row.

Kernel
Model Exponential Weibull Log-logistic

Selection Right Interval Right Interval Right Interval

Linear
Bayesian 1581.8 1585.5 1570.6 1572.6 1553.7 1586.2

Cross-Val 1581.6 1583.9 1569.8 1570.6 1550.1 1550.9

Quadratic
Bayesian 1240.9 1239.1 1186.5 1190.0 1177.0 1178.0

Cross-Val 1240.1 1238.4 1185.2 1187.9 1175.5 1175.0

Cubic
Bayesian 1234.6 1229.1 1190.3 1182.6 1182.2 1155.9

Cross-Val 1239.7 1223.3 1195.1 1171.3 1157.4 1134.9

RBF

Bayesian 1207.5 1208.3 1191.6 1197.3 1260.6 1134.6

Hybrid 1201.0 1202.9 1213.1 1425.2 1130.7 1111.6

Cross-Val 1198.0 1193.1 1147.4 1154.2 1116.4 1096.2

For comparison, table 4 shows the negative log-likelihood for the set of “op-
timal” accelerated life survival analysis models, where a single shape parameter
(if required) is estimated for the entire dataset, but a separate scale parameter
for each set of five replicates sharing a common heat treatment and incubation
temperature. This gives the irreducible component of the negative log-likelihood
statistic, which depends on the inherent variability of the data, and so provides
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Table 4. Minimum possible negative log-likelihood for the C. botulinum growth-
domain dataset, assuming interval censoring

Distribution − log L

exponential 1084.9
Weibull 826.5

log-logistic 817.1

a lower bound on the negative log-likelihood. Again the results provide good
evidence for the use of a two-parameter survivor function, but only marginal
evidence for the log-logistic over the Weibull distribution.

4.3 Subjective Analysis of Model Performance

Figure 2 shows contour plots of the probability of growth as a function of incu-
bation temperature, Ti, and incubation time, t, for two heat treatment regimes,
generated by a kernel accelerated life survival analysis model, with Bayesian
model selection, radial basis function kernel and the log-logistic survivor func-
tion with interval censoring. Figure 2 (a) shows an example of a heat treatment
regime for which the kernel survival analysis performs well; the experimental data
lie principally within the contours depicting a probability of growth between 0.1
and 0.9. The key advantage of a parametric survival analysis is that it provides
a reliable means of defining the growth domain at an arbitrary probability level,
in this case shown by the contour at a probability level of 0.001. The only ex-
trapolation here involves only the survivor function, not the regression part of
the model, and so the properties of the growth domain are well understood.

Figure 2 (b) shows an example of a heat treatment regime where the model
performs relatively poorly, with a significant proportion of the experimental data
lying below the contour denoting a probability of growth of 0.1. Figure 3 (a)
shows the cumulative probability of growth for this heat treatment regime, for
an incubation temperature of 25◦C; it can easily be seen that the experimental
data lie within the tail of the survival distribution. Figure 3 (b) shows the cor-
responding cumulative probability plot for the “optimal” accelerated life model,
importantly this shows that an accelerated life model is capable of modelling the
data accurately. The failure of the kernel survival analysis model for this heat
treatment regime must therefore be due to the regression part of the model. In
this study, we have used a radial basis function kernel, which in principle is able
to form highly complex non-linear models, however both Bayesian and cross-
validation based model selection schemes have been employed to ensure that
the kernel survival analysis model is no more complex than is justified by the
available data. The best generalisation performance is obtained using a relatively
smooth regression model, giving rise to a rather broad survival distribution for
the majority of heat treatment regimes and incubation temperatures. Our in-
terpretation of this result is that, with only 154 combinations of heat treatment
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Fig. 2. Contour plots of the probability of growth as a function of the incubation
temperature, Ti and incubation time, t, for two heat treatment regimes. The growth
domain can be defined at an arbitrary probability level, in this case Pr(T < t) = 0.001.
Experimental data where growth was observed are shown as crosses, censored data,
where growth was not observed by the 90th day are shown as circles.

and incubation temperature, there are simply not enough experimental data to
adequately describe the influence of heat treatment and incubation conditions
on the parameters of the survivor function. Obviously, this may have signifi-
cant implications on statistical risk assessment of the hazards associated with
foodborne microbial pathogens.

4.4 Credible Interval on Model Predictions

Figure 4 shows a plot of the cumulative probability of growth as a function of
incubation time, t, for a set of experimental conditions where the model performs



52 G.C. Cawley et al.

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Tc = 80 ° C : tc = 183.8 min : Ti = 25° C

t

1 
−

 F
(t

)

(b)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Tc = 80 ° C : tc = 183.8 min : Ti = 25° C

t

1 
−

 F
(t

)

Fig. 3. Plots of the cumulative probability of growth as a function of incubation time,
t, for a heat treatment regime and incubation temperature where the kernel survival
analysis model performs relatively poorly (a) and equivalent results for the “optimal”
accelerated life model (b). Experimental data where growth was observed during the
trial period are depicted by crosses, the dashed lines in (a) delimit a credible interval
on model predictions.

reasonably well. The figure also demonstrates a Bayesian credible interval around
the most probable cumulative probability function. One thousand samples were
drawn from the posterior distribution over all model parameters, (β, b, κ). The
credible interval is formed from the 5th and 95th centiles of the cumulative distri-
bution functions given by the output of the models corresponding to each of these
samples. Note that the upper and lower limits of the credible interval are not
symmetric. The Bayesian credible interval on model prediction provides an in-
dication of the uncertainty inherent in determination of the model parameters.
The upper limit of the credible interval provides a “conservative” model that
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Fig. 4. Plot of the cumulative probability of growth as a function of incubation time, t,
for a particular heat treatment regime and incubation temperature, experimental data
where growth was observed during the trial period are depicted by crosses. Note the
Bayesian credible interval on model predictions, shown by the dashed lines.

could be used in safety-critical applications. In this case, the contour defining
the growth domain could be loosely interpreted as indicating that there is a 95%
probability that the probability of growth is less than 0.1%. This may be a useful
feature for public communication of confidence in the prediction of the model.

5 Summary

In this paper, we have proposed an accelerated life survival analysis model based
on Bayesian kernel learning methods, providing a statistically sound means of
modelling survival data, allowing for an arbitrary relationship between the ex-
planatory variables and the scale parameter of the survivor function. Bayesian
and cross-validation model selection strategies provide reliable means of selecting
the regularisation and kernel parameters such that the model is no more complex
than is justified by the training data. The Bayesian interpretation also provides
a useful credible interval on model predictions. The kernel survival analysis pro-
cedure was then used to model the growth domain of the foodborne microbial
pathogen Clostridium botulinum. It was found that the use of a more powerful
non-linear method for analysis of the data than is normally applied to this type
of dataset reveals that the experimental data is probably insufficient to form a
statistical model that both generalises well and provides an adequate subjective
fit to the data. This study therefore supports the collection of more substantial
datasets in this field for more reliable risk analysis of the hazards associated with
foodborne microbial pathogens. As the collection of data is a time-consuming
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and expensive procedure, we aim to use active learning to concentrate further
experimental work in areas where the uncertainty of the model is greatest.
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Abstract. The informative vector machine (IVM) is a practical method
for Gaussian process regression and classification. The IVM produces
a sparse approximation to a Gaussian process by combining assumed
density filtering with a heuristic for choosing points based on minimizing
posterior entropy. This paper extends IVM in several ways. First, we
propose a novel noise model that allows the IVM to be applied to a
mixture of labeled and unlabeled data. Second, we use IVM on a block-
diagonal covariance matrix, for “learning to learn” from related tasks.
Third, we modify the IVM to incorporate prior knowledge from known
invariances. All of these extensions are tested on artificial and real data.

1 Introduction

Kernel-based methods have become increasingly popular in the machine learn-
ing field. Their close relationships to convex optimization and numerical lin-
ear algebra—and their corresponding amenability to theoretical analysis—have
helped to fuel their fast growth relative to older non-convex regression and classi-
fication methods such as neural networks. Kernel-based methods reduce the data
to a “kernel matrix,” the entries of which are evaluations of a “kernel function”
or “covariance function.” Computationally efficient algorithms are available to
optimize various statistical functionals of interest for given values of this matrix.

As with most statistical procedures, one can take either a Bayesian or a
frequentist perspective on kernel-based methods. The Bayesian point of view in-
volves using a Gaussian process framework to place prior distributions on families
of regression or discriminant functions [28]. A Gaussian process is characterized
by a mean function and a covariance function, and it is this latter function that
yields the “kernel matrix” (when evaluated at the observed data). The frequen-
tist point of view focuses on the optimization of loss functions defined on an
inner product space; the choice of inner product defines the kernel function and
thus the kernel matrix [19].
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By focusing on point estimates, the frequentist approach can yield a stripped-
down computational problem that has the appeal of tractability in the context of
large-scale problems. For example, the support vector machine reduces to a rel-
atively simple quadratic program [6]. This appeal, however, is somewhat dimin-
ished in practice by two factors: (1) many kernel-based procedures involve hyper-
parameters, and setting hyperparameters generally involves a computationally-
intensive outer loops involving cross-validation; and (2) fuller frequentist infer-
ence requires calculating error bars for point estimates. This too often requires
computationally-intensive extensions of the basic parameter-fitting algorithm
(e.g., the bootstrap).

The Bayesian approach to kernel-based methods, on the other hand, focuses
on the computation or approximation of posterior probability distributions un-
der the Gaussian process prior. This is generally a more ambitious goal than
computing a point estimate, but it also goes a significant distance towards solv-
ing the other practical problems associated with using kernel-based methods.
Indeed, (1) standard procedures involving the marginal likelihood can be used
to set hyperparameters; and (2) the posterior distribution naturally provides an
assessment of uncertainty.

Another virtue of the Bayesian approach is the relative ease with which one
can consider extensions of a basic model, and it is this virtue that is our focus
in the current paper. In particular, we consider two elaborations of the basic
classification setup: semi-supervised learning and multi-task learning. While the
frequentist paradigm both permits and requires substantial creativity in deriv-
ing methods to attack problems such as these, the Bayesian approach provides
standard tools with which to proceed. In particular, in this paper we show how
standard Bayesian modeling tools—latent variable modeling and hierarchical
modeling—can be used to address nonparametric semi-supervised and multi-
task learning within the Gaussian process framework.

Kernel matrices are N ×N matrices (where N is the number of data points),
and in both the Bayesian approach and the frequentist approach to kernel-based
methods it is important to develop procedures that take advantage of putative
low-rank structure in these matrices. One generally useful idea involves spar-
sity—one seeks functions that have expansions in which most of the coefficients
are zero. Sparsity can be imposed in the loss function and/or imposed as part
of a computational approximation. For example, in the support vector machine
the use of a hinge loss implies that only a subset of the training data have
non-zero coefficients—these are the support vectors. Support vectors embody
computational efficiencies and also permit the design of useful extensions that
are themselves computationally efficient. For example, virtual support vectors
allow invariances to be incorporated into support vector machine training [18].
In the current paper, we show how a similar notion can be developed within the
Bayesian paradigm—a notion that we refer to as virtual informative vectors.

In summary, we view sparse Gaussian process methods as providing a flex-
ible, computationally-efficient approach to nonparametric regression and clas-
sification; one that is as viable in practice as its frequentist cousins, and one
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that is particularly easy to extend. In this paper we focus on a specific sparse
Gaussian process methodology — the informative vector machine (IVM). We
show how the basic IVM can be extended to accommodate our proposals for semi-
supervised learning and multi-task learning. These extensions are not restricted
to the IVM methodology: our approach to multi-task learning falls within the
broader class of hierarchical Bayesian methods and our noise model for semi-
supervised learning can be used in combination with a wide range of models.
However the approach we take to incorporating invariances exploits a particular
characteristic of the IVM. It relies on the fact that the IVM can be viewed as
a compression scheme. By this we mean that the decision boundary can be in-
ferred by considering only the ‘active set’. This is a characteristic that the IVM
shares with the support vector machine. Previously proposed sparse Gaussian
process methods seek sparse representations for mean and covariance functions
but rely on the entire data set to formulate them.

The paper is organized as follows. After an overview of the general Gaussian
process methodology in Section 2, we review the the informative vector ma-
chine in Section 3. In Section 4, we present a latent variable approach to semi-
supervised learning within the IVM framework. Section 5 develops the IVM-
based approach to multi-task learning. Finally, in Section 6 we show how the
notion of sparsity provided by the IVM may be exploited in the incorporation
of prior invariances in the model.

2 Gaussian Processes

Consider a simple latent variable model in which the output observations, y =
[y1 . . . yN ]T, are assumed independent from input data, X = [x1 . . .xN ]T, given
a set of latent variables, f = [f1 . . . fN ]T. The prior distribution for these latent
variables is given by a Gaussian process 1,

p (f |X,θ) = N (f |0,K) ,

with a covariance function, or ‘kernel’, K, that is parameterised by the vector θ
and evaluated at the points given in X. This relationship is shown graphically
in Figure 1.

The joint likelihood can be written as

p (y, f |X,θ) = p (f |X,θ)
N∏

n=1

p (yn|fn) (1)

where p (yn|fn) gives the relationship between the latent variable and our obser-
vations and is sometimes referred to as the noise model. For the regression case
the noise model can also take the form of a Gaussian.
1 We use N (x|μ, Σ) to denote a Gaussian distribution over x with a mean vector μ

and covariance matrix Σ. When dealing with one dimensional Gaussians the vectors
and matrices are replaced by scalars.
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Fig. 1. The Gaussian Process model drawn graphically. We have made use of ‘plate’
notation to indicate the independence relationship between f and y.

p (yn|fn) = N
(
yn|fn, σ

2) . (2)

Then the marginalised likelihood can be obtained by integrating over f in (1).
This marginalisation is straightforward—it can be seen to be a special case of
the more general result,

p (y) =
∫

N (f |0,K)
N∏

n=1

N
(
yn|fn, β

−1
n

)
df

= N
(
y|0,K + B−1) , (3)

where B is a diagonal matrix whose nth diagonal element is given by βn. To
recover the special case associated with the spherical Gaussian noise model from
(2) we simply substitute each βn with 1

σ2 and each mn with yn.

2.1 Optimising Kernel Parameters

A key advantage of the Gaussian process framework is that once the marginal
likelihood is computed then it can be maximised with respect to parameters of
the kernel, θ, yielding a so-called empirical Bayes method for fitting the model.
We have seen that for Gaussian noise models the computation of this marginal
likelihood is straightforward. Unfortunately for non-Gaussian noise models the
required marginalisation is intractable and we must turn to approximations. One
such approximation is known as assumed density filtering (ADF). As we shall
see, the ADF approximation proceeds by incorporating the data a single point
at a time and using Gaussian approximations to the non-Gaussian posterior
distributions that arise to maintain the tractability of the model.

2.2 The ADF Approximation

Assumed density filtering has its origins in on-line learning: it proceeds by ab-
sorbing one data point at a time, computing the modified posterior and replac-
ing it with an approximation that maintains the tractability of the algorithm. A
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thorough treatment of this approach is given by [16,7]. Here we review the main
points of relevance for the IVM algorithm.

Given a noise model, p (yn|fn), we note that the joint distribution over the
data and the latent variables factorises as follows

p (y, f) = N (f |0,K)
N∏

n=1

p (yn|fn)

which may be written

p (y, f) =
N∏

n=0

tn (f)

where we have defined tn (f) = p (yn|fn) and in a slight abuse of notation we
have taken t0 (f) = N (f |0,K). ADF takes advantage of this factorised form
to build up an approximation, q (f), to the true process posterior, p (f |y). The
factorisation of the joint posterior is exploited by building up this approximation
in a sequential way so that after i points are included we have an approximation
qi (f). The starting point is to match the approximation to the prior process, i.e.
q0 (f) = t0 (f) = N (f |0,K). The approximation is then constrained to always
have this functional form. As the data point inclusion process is sequential two
index sets can be maintained. The first, I, is referred to as the active set and
represents those data points that have been included in our approximation. The
second, J , is referred to as the inactive set and represents those data points that
have not yet been incorporated in our approximation. Initially I is empty and
J = {1 . . .N}. The approximation to the true posterior is built up by selecting a
point, n1, from J . This point is included in the active set leading to an updated
posterior distribution of the form,

p̂1 (f) ∝ q0 (f) tn1 (f) ,

our new approximation, q1 (f), is then found by minimising the Kullback Leibler
(KL) divergence between the two distributions.

KL (p̂1||q1) = −
∫

p̂1 (f) log
q1 (f)
p̂1 (f)

df .

More generally, for the inclusion of the ith data point, we can write

p̂i (f) =
qi−1 (f) tni (f)

Zi
(4)

where the normalization constant is

Zi =
∫

tni (f) qi−1 (f) df . (5)

ADF minimises KL (p̂i||qi) to obtain the new approximation. This KL divergence
can be minimised by ‘moment matching’ equations of the form

qi (f) = N (f |μi,Σi) .
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where

μi = 〈f〉p̂i(f) (6)

Σi =
〈
ffT
〉

p̂i(f)
− 〈f〉p̂i(f) 〈f〉p̂i(f)

T (7)

and where 〈·〉p(·) denotes an expectation under the distribution p (·). It turns
out that our ability to compute (6) and (7) depends on the tractability of the
normalisation constant in (4). An update equation for the posterior mean (see
Appendix A) is given by

μi = μi−1 + Σi−1gi,

where the dependence on Zi is through

gi =
∂ logZi

∂μi

.

The corresponding update for Σi is given by

Σi = Σi−1 −Σi−1
(
gigT

i − 2Γi

)
Σi−1

where
Γi =

∂ logZi

∂Σi−1
.

The ADF approximation can therefore be easily be applied for any noise model
for which the expectation of the noise model in (5) is tractable. In the next
sections we shall review two of the most commonly used noise models within the
context of the ADF algorithm. The Gaussian noise model is commonly used in
regression applications and the probit noise model is applicable for classification
problems. Later, in Section 4, we describe a noise model that is suitable for
semi-supervised learning.

2.3 Gaussian Noise Model

One of the most widely used approaches for interpolation between data points
is model fitting through least squares. From the probabilistic point of view this
is equivalent to a Gaussian noise model. If each data point, yn, has a different
associated variance, β−1

n , then the noise model is given by

p (yn|fn) =

√
βn

2π
exp

(
−βn (yn − fn)2

2

)
.

As we described in the previous section, the updates for the mean and covariance
functions depend on Zi, the expectation of the noise model under the current
estimate of the posterior process, qi−1 (f). Since the noise model only depends
on fn, the nth element of f , we may rewrite this expectation in the form

Zi =
∫

p (yn|fn) q (fn) dfn, (8)
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where we have exploited the fact that the marginal, q (fn), of the full multivariate
Gaussian, q (f), is given by

q (fn) = N (fn|μi−1,n, ςi−1,n)

where μi−1,n is the nth element of μi−1 and ςi−1,n is the nth element from the
diagonal of Σi−1. As a result the expectation in (8) is easily computed as

Zi = N
(
yn|μi−1,n,

(
ςi−1,n + β−1

n

))
The log partition function,

logZi = −1
2

log 2π − 1
2

log
(
ςi−1,n + β−1

n

)
− (yn − μi−1,n)2

2
(
β−1

n + ςi−1,n

) ,
can then be differentiated with respect to μi−1 to give

gin =
yn − μi−1,n

β−1
n + ςi−1,n

, (9)

where gin is the nth element of gi and all other elements are zero. Similarly we
can differentiate the log partition with respect to Σi−1 to find the nth diagonal
element of Γi

γin = − 1
2
(
ςi−1 + β−1

n

) +
1
2
g2

in

all other elements of Γi are zero.
For the update of the covariance we need to consider the matrix gigT

i − 2Γi.
However, for the Gaussian noise model this matrix can be written in diagonal
form, diag (νi), where the nth element of νi is

νin = −2γin + g2
in

=
1(

ςi−1 + β−1
n

) (10)

and all other elements are zero. This leads to a set of simplified update equations
of the form

μi = μi−1 + ginsi−1,n, (11)

Σi = Σi−1 − νinsi−1,nsT
i−1,n, (12)

where si−1,n is the nth column from Σi−1.
Implicit in these update equations is the minimisation of a KL divergence

between the true posterior and the approximating Gaussian process posterior,
q (f). Of course, for the Gaussian noise model, the true posterior process is
Gaussian so the approximation is exact. In other words, for the special case of
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the Gaussian noise, these updates are simply a scheme for on-line learning of
Gaussian processes without any approximations involved.

In the next section, we consider the probit classification noise model. This
noise model is an example from the more general case where the true posterior
distribution is non-Gaussian and every update of the mean and posterior implic-
itly involves an approximation to this true posterior through moment matching.

2.4 Probit Noise Model

We consider binary classification where yn ∈ {−1, 1}. A convenient representa-
tion for the probability of class membership given the latent variable fn is given
by the probit noise model for classification

p (yn|fn) = φ (ynλ (fn + b))

where φ (·) is the cumulative Gaussian given by

φ (z) =
1√
2π

∫ z

−∞
exp

(
− t2

2

)
dt,

the slope of which is controlled by λ. The use of the probit, rather than the more
commonly encounter logit, is convenient as it leads to a tractable integral for
the partition function:

Zi =
1

(2π)
N
2 ς

1
2
i−1,n

∫
φ (ynλ (fn + b)) exp

(
−
(
fn − μi−1

)2
2ςi−1,n

)
dfn

which may be integrated to obtain

Zi = φ (ui−1,n) .

where
ui−1,n = ci−1,n (μi−1,n + b)

ci−1,n =
yn√

λ−2 + ςi−1,n

. (13)

Once again, the partition function is only dependent on one element of μi−1 and
one element of Σi−1. Performing the necessary derivatives to obtain gin and νin

we have2

gin = ci−1,nN (ui−1,n) [φ (ui−1,n)]−1 , (14)

2 In implementation, care must be taken in computing gin: when ui−1,n has large
magnitude both φ (ui−1,n)and N (ui−1,n) become very small and numerical precision
issues arise. This can be avoided by performing the computations should be done in
the log domain.
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where

N (ui−1,n) =
1√
2π

exp

(
−

u2
i−1,n

2

)

and

γin = −1
2
ginui−1ci−1,n

which implies
νin = gin (gin + ui−1ci−1,n) . (15)

Updates for μi−1 → μi and Σi−1 → Σi , the parameters of q (f), are then
identical to those given in (11) and (12). Note from (13) that we can consider
the slope, λ, of the noise model to be infinite and develop an equivalent rep-
resentation by adding a matrix λ−2I to the kernel matrix thereby causing ςi,n
to increase by λ−2. In our experiments, this approach is preferred because the
noise model slope can then be optimised in tandem with the kernel parameters.

2.5 Kernel Parameter Updates

So far we have discussed how the posterior’s mean and covariance functions can
be updated in an on-line way given a fixed kernel. We suggested in the introduc-
tion that one of the main reasons we may wish to keep track of a representation
of the posterior covariance is so that we may learn the kernel parameters via an
empirical Bayes approach.

With reference to the graphical representation of our model in Figure 1 our
objective is to marginalise the latent variable f and optimise the parameters
of the kernel by maximising the resulting likelihood. This marginalisation can
only be achieved exactly if the noise model is Gaussian. When dealing with
non-Gaussian noise models we must again consider approximations.

One perspective on the ADF approximation is that we are taking non-
Gaussian noise models and approximating them with Gaussian noise models.
While in practise we are approximating a non-Gaussian posterior distribution
with a Gaussian distribution, q (f), this approximation can also be viewed as
replacing the true noise model with a ‘apparent Gaussian noise model’ that
also induces the posterior distribution q (f). Note that this point of view is only
reasonable if the noise model is log concave, otherwise the implied Gaussian
distribution can have a negative variance.

If we accept this point of view then we consider

p (y) ≈ N
(
m|0,K + B−1) , (16)

where m and β are the means and precisions associated with the implied Gaus-
sians, to be a valid approximation to the marginal likelihood. The individual
site mean, mn, and precision, βn, associated with each ‘apparent Gaussian noise
model’ can be computed given that noise model’s values for gin and νin. By
rearranging (9) and (10) and replacing yn with mn we have
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gi =
mn − μi−1,n

β−1
n + ςi−1,n

gi =
mn − μi−1,n

νin

mn =
gin

νin
+ μi−1,n (17)

and

νin =
1

ςi−1,n + β−1
n

β−1
n =

1
νin

− ςi−1,n

βn =
νin

1− νinςi−1,n
. (18)

which give the site parameters for a given noise model. Note that if νinςi−1,n > 1
the site precision, βn, becomes negative. This can only occur if the noise model
is not log concave—we shall encounter such a noise model in Section 4.

3 The Informative Vector Machine

One advantage of the Gaussian process perspective referred to in the introduction
is automatic selection of the kernel parameters through likelihood optimisation.
In practise though gradients with respect to the parameters must be computed.
Computation of these gradients involves an inverse of the kernel matrix, K,
at each step. This matrix inverse gives each gradient step O

(
N3
)

complexity.
Even if the kernel parameters are given including N data points through ADF
still leads to an O

(
N3
)

complexity. The IVM algorithm seeks to resolve these
problems by seeking a sparse representation for the data set. The inspiration for
this approach is the support vector machine, a kernel algorithm for which the
solution is typically naturally sparse. This natural sparsity can arise because the
SVM algorithm ignores the process variances, however these process variances
must be accounted for if optimisation of kernel parameters via empirical Bayes is
undertaken. Csató and Opper suggest obtaining a sparse representation through
minimisation of KL divergences between the approximate posterior and a sparse
representation [8,7]. The IVM takes a simpler approach of using a selection
heuristic to incorporate only the most informative points and stopping after d
inclusions [14,21]. By making only d inclusions the resulting model is forced
to be sparse. As a result we can reduce the computational requirements of the
algorithm from O

(
N3
)

to O
(
d2N

)
and the storage requirements form O

(
N2
)

to O (dN). In the IVM this ‘sparsification’ of the original Gaussian process is
imposed by only selecting a subset of the data. The ADF algorithm allows us to
select this subset in an on-line way, given a data point selection criterion. The
IVM uses an information theoretic selection heuristic to select which data point
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to include. Specifically, the point that gives the largest reduction in posterior
process entropy is included. In this way the entropy of the posterior process is
greedily minimised.

3.1 Data Point Selection

The simple greedy selection criterion on which the IVM is based is inspired
by information theory. The change in entropy of the posterior process after
including a point can be seen as a measure of reduction in the level of uncertainty.
This entropy reduction can only be evaluated because we are propagating the
posterior covariance function. Loosely speaking, the entropy of the posterior
process is analogous to the version space in the SVM. Greedily minimising the
entropy can be seen as slicing the largest possible section away from version space
and tracking the posterior covariance can be seen as maintaining a representation
of the size and shape of version space while the model is being constructed.

The entropy change associated with including the nth point at the ith inclu-
sion is given by

ΔHin = −1
2

log |Σi,n|+
1
2

log |Σi−1|

= −1
2

log |I−Σi−1diag (νi)|

= −1
2

log (1− νinςi−1,n) . (19)

This entropy change can be evaluated for every point in the inactive set, J , and
the point associated with the largest entropy decrease can then be included.
This process is repeated until d inclusions have been made. Other criteria (such
as information gain) are also straightforward to compute. Such greedy selection
criteria are inspired by information theory and have also been applied in the
context of active learning [15,22], however in active learning the label of the
data point, yn, is assumed to be unknown before selection: here the label is
known and can strongly influence whether a particular point is selected.

We note from (19) that in order to score each point we need to keep track of
the diagonal terms from Σi−1 and the values νin. If these terms can be stored
and updated efficiently then the computational complexity of the algorithm can
be controlled.

Maintaining the whole of Σi−1 in memory would require O
(
N2
)

storage,
which is undesirable, so our first task is to seek an efficient representation of the
posterior covariance.

From (12) it is clear the posterior covariance Σi has a particular structure
that arises from the addition of successive outer products to the original prior
covariance matrix Σ0 = K. This can be re-written as

Σi = K−MT
i Mi (20)

where the kth row of Mi ∈ �i×N is given by √νk,nk
sk−1,nk

and nk represents
kth included data point. Recalling that si−1,ni is the nith column of Σi−1 we
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note that, if we are not storing Σi−1, we are not able to represent (for instance)
si−1,ni directly. However, this column can be recomputed from Mi−1 and K by

si−1,ni = kni − aT
i−1,ni

Mi−1 (21)

where kni = s0,ni is the nith column of K = Σ0 and ai−1,ni is the nith column
of Mi−1. This recomputation requires O ((i− 1)N) operations.

3.2 The Matrix Mi

Let us consider more closely what the matrix Mi represents. It is straightforward
to show that a Gaussian process which has included an active set I with i
elements has a posterior covariance of the form

Σi = K−K:,I
(
B−1

I + KI

)−1
KI,: (22)

where K:,I is a matrix containing the columns of K that are in the active set,
KI is an i× i symmetric matrix containing the rows and columns from K that
are in I and BI is a diagonal matrix of the ‘site precisions’ for the active set.
Equating with (20) we note that MT

i Mi = K:,I
(
B−1

I + KI

)−1
KI,: or

LT
i Mi = KI,:

where LiLT
i =

(
B−1

I + KI

)−1
.

From the way that the updates in (12) accumulate it can be shown that a
valid factorisation of the matrix LiLT

i is given by the lower triangular matrix

Li =

[
Li−1 0

aT
i−1,ni

ν
− 1

2
i,ni

]
, (23)

where L1 = ν
− 1

2
i,n1

. This lower triangular matrix is recognised as a Cholesky factor

of
(
B−1

I + KI

)−1
. We may gain some reassurance from the implicit presence of

a Cholesky decomposition within the algorithm as they are typically considered
to be a numerically stable. Note however that in [21,14] a slightly different rep-
resentation is suggested. Instead of keeping track of the Cholesky decomposition
of
(
B−1

I + KI

)
, the decomposition of

(
I + B− 1

2
I KIB

− 1
2

I

)
is used to give greater

numerical stability when KI is not full rank and when some values of B−1
I are

close to zero. Here we prefer our representation as it arises naturally and keeps
the update equations clear.

Note that the matrix Li is only a valid lower Cholesky factor if νi,ni is non-
negative. This can be shown to hold true if the noise model is log-concave.
Complications arise if the noise model is not log-concave; a simple strategy for
avoiding this problem is suggested in Section 4.

We have already stated that storing the entire posterior covariance matrix is
impractical because of memory requirements. However, maintaining an estimate
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Algorithm 1. The IVM point selection algorithm.
Require: Require d = number of active points. Start with m = 0 and β = 0 for clas-

sification. For regression substitute appropriate target values. Take ς0 = diag (K),
μ = 0, J = {1, . . . , N}, I = {·}, S0 is an empty matrix.
for k = 1 to d do

for all n ∈ J do
compute gkn according to (14) (not required for Gaussian).
compute νkn according to (15) or (10).
compute ΔHkn according to (19).

end for
nk = argmaxn∈JΔHkn.
Update mnk and βnk using (17) and (18).
Compute ςk and μk using (21), (24) and (25).
Append √

νknk
sT

k−1,nk
to Mk−1 using (21) to form Mk.

Update Lk from Lk−1 using (23).
Add nk to I and remove nk from J .

end for

of the process variance associated with each data point is of interest. These
variances are the diagonal elements from the posterior covariance matrix, ςi =
diag (Σi). A vector storing these variances can be updated easily using (11), (12)
and (21) to give,

ςi = ςi−1 − νi,nidiag
(
si−1,nis

T
i−1,ni

)
(24)

which is computed in O (N) operations. The posterior mean output vector should
also be stored and updated using

μi = μi−1 + ginisi−1,nj (25)

which also requires O (N) operations.
An example of how these updates may be combined efficiently in practise is

given in Algorithm 1.

3.3 IVM Kernel Parameter Updates

The ADF-based IVM algorithm described in Algorithm 1 leads to sparse vectors
m and β each with d non-zero elements. In Section 2.5, we described how kernel
parameters could be updated given non-sparse vectors of these site parameters.
To maximise kernel parameters for the IVM we need to express the likelihood in
terms of sparse versions of these vectors. In [21] this is achieved by expressing
the likelihood in terms of both the active and inactive sets. Here we take a much
simpler approach of maximising the likelihood of the active points only,

p (yI |θ) ≈ N
(
mI |0,KI + B−1

I

)
, (26)

where yI is a vector containing only those elements of y that are in the active
set. The dependence of the likelihood on the parameters, θ, is through the active
portion of the kernel matrix KI .
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Given the active set, I, and the site parameters, m and β, we can optimise
our approximation with respect to the kernel parameters by using a non-linear
optimiser such as scaled conjugate gradients.

Note that in practise, the quality of the active set depends on the kernel pa-
rameter selection as does the optimal site parameters. We can certainly imagine
more complex schema for optimising the kernel parameters that take account of
these dependencies in a better way, some examples of which are given in [21], but
for our experiments we simply iterated between active set selection and kernel
parameter optimisation.

3.4 Noise Parameter Updates

As well as updating the parameters of the kernel, it may be helpful to update the
parameters of the noise function. However, the likelihood approximation (26) is
only indirectly dependent on those parameter values so cannot be used as an
objective function. One way forward would be to optimise a variational lower
bound,

N∑
n=1

∫
qd (fn) log p (yn|fn,θ) p (fn) dfn −

N∑
n=1

∫
qd (fn) log q (fn) dfn,

on the likelihood, where θ are the parameters of the noise model that we wish
to optimise. The relevant term in this bound is

N∑
n=1

∫
qd (fn) log p (yn|fn,θ) . (27)

This lower bound can be upper bounded by

L (θ) =
N∑

n=1

log
∫

qd (fn) p (yn|fn,θ)

=
N∑

n=1

logZn. (28)

For many models it is straightforward to compute (27), however for all noise
models it is possible to compute (28). We found that, for an ordered categor-
ical noise model (where there are an atypically large number of noise model
parameters), optimisation of (28) was sufficient.

3.5 Point Removal and Expectation Propagation

The sequential nature of the ADF algorithm leads to a weakness in the approx-
imation for which a fairly straightforward fix has been suggested [16]. When
the Gaussian approximation to the likelihood after i inclusions is computed, its
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Algorithm 2. The IVM algorithm for parameter optimisation.
Require: Require d active points. T iterations.

for i = 1 toT do
Select points using Algorithm 1.
Maximise the approximation to the likelihood (26) using a scaled conjugate gra-
dient optimiser [17].
if noise parameter updates are required. then

Select points using Algorithm 1.
Maximise the sum of the log partition functions (28) using a scaled conjugate
gradient optimiser.

end if
end for

associated site parameters, βni and mni are based on only the i− 1 points that
are already in the active set. However as more points are included and the pos-
terior approximation evolves it is likely that the quality of this approximation
becomes worse. The approach suggested by [16] is to revisit the approximation
and improve it. This refinement of the ADF algorithm is known as expectation
propagation (EP). Conceptually one can view these later updates as removing
a point from the active set (by resetting the associated site parameters to zero)
and then computing a new Gaussian approximation in the light of the current
(and usually more accurate) representation of the posterior covariance. The key
issue for the algorithm is, therefore, to be able remove a point in an efficient
manner.

Even if the expectation propagation algorithm is not being used, it may be
desirable to remove points within the IVM algorithm as it is likely to be the
case that points that were included in the early stages of the algorithm, when
the estimate of the posterior’s covariance and mean functions were poor, are
less useful than they originally appeared. Inclusion of such points is a natural
consequence of greedily selecting points to reduce entropy. Some approaches to
the implementation of point removal and expectation propagation with the IVM
are further discussed in [21].

3.6 IVM Implementation

In the experimental sections that follow we make use of the IVM algorithm for
learning. For all these experiments we used the kernel parameter initialisations
and the types of kernels detailed in Appendix B. The algorithm we used for
point selection is specified in Algorithm 1 and when optimisation was required
we typically made use of 8 iterations of Algorithm 2.

4 Semi-supervised Learning

In a traditional classification problem, data are presented in the form of a set
of input vectors X = [x1 . . .xN ]T and associated labels y = [y1 . . . yN ]T , yn ∈
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{−1, 1}. When performing classification the IVM algorithm seeks a process map-
ping between the inputs and the labels that yields high predictive accuracy. This
is known as supervised learning, as each input data point, xn, has an associated
label, yn. In practice, labelling a data set can be a time consuming process;
very often it is straightforward to obtain input data points, xn, but expensive to
obtain an associated label yn. It is natural then to consider whether unlabelled
data points can be used to improve predictive performance. Fitting models using
such partially labelled data sets is known as ‘semi-supervised learning’.

Most probabilistic classification algorithms can be categorised as either dis-
criminative or generative methods. Discriminative methods, such as the IVM, es-
timate the probability of class membership, p (yn|xn) directly. Generative meth-
ods typically model the class-conditional densities, p (xn|yn) and use them in
combination with an estimate of the class priors to infer p (yn|xn) through Bayes’
theorem. In the former case, if we fail to make any assumptions about the under-
lying distribution of input data, the unlabelled data does not affect our predic-
tions. Thus, most attempts to make use of unlabelled data within a probabilistic
framework focus on incorporating a model of p (xn); for example, by treating
it as a mixture,

∑
yn

p (xn|yn) p (yn), and inferring p (yn|xn) (e.g., [13]), or by
building kernels based on p (xn) (e.g., [20]). These approaches can be unwieldy,
however, in that the complexities of the input distribution are typically of little
interest when performing classification, so that much of the effort spent mod-
elling p (xn) may be wasted.

An alternative is to make weaker assumptions regarding p (xn) that are of
particular relevance to classification. In particular, the cluster assumption asserts
that the data density should be reduced in the vicinity of a decision boundary
(e.g., [5]). Such a qualitative assumption is readily implemented within the con-
text of non-probabilistic kernel-based classifiers. Here we discuss how the same
assumption can be incorporated within the IVM algorithm [11].

Our approach involves a notion of a ‘null category region’, a region that acts
to exclude unlabelled data points. Such a region is analogous to the traditional
notion of a ‘margin’ and indeed our approach is similar in spirit to the trans-
ductive SVM [26], which seeks to maximise the margin by allocating labels to
the unlabelled data. A major difference, however, is that through our use of the
IVM algorithm our approach maintains and updates the process variance. As
we will see, this variance turns out to interact in a significant way with the null
category concept.

4.1 Null Category Noise Model

Before considering the null category noise model (NCNM) we first briefly review
ordered categorical models that underpin the NCNM. In the specific context of
binary classification, we consider an ordered categorical model containing three
categories3.

3 See also [23] that makes use of a similar noise model in a discussion of Bayesian
interpretations of the SVM.
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Fig. 2. The ordered categorical noise model. The plot shows p (yn|fn) for different
values of yn. Here we have assumed three categories.

p (yn|fn) =

⎧⎨
⎩

φ
(
−
(
fn + w

2

))
for yn = −1

φ
(
fn + w

2

)
− φ

(
fn − w

2

)
for yn = 0

φ
(
fn − w

2

)
for yn = 1

,

where φ (x) =
∫ x

−∞ N (z|0, 1)dz is the cumulative Gaussian distribution function
and w is a parameter giving the width of category yn = 0 (see Figure 2).

We can also express this model in an equivalent and simpler form by replacing
the cumulative Gaussian distribution by a Heaviside step function H(·) and
adding independent Gaussian noise to the process model:

p (yn|fn) =

⎧⎨
⎩

H
(
−
(
fn + 1

2

))
for yn = −1

H
(
fn + 1

2

)
−H

(
fn − 1

2

)
for yn = 0

H
(
fn − 1

2

)
for yn = 1

,

where we have standardised the width parameter to 1, by assuming that the
overall scale is also handled by the process model.

To use this model in an unlabelled setting, we introduce a further variable,
zn, that is one if a data point is unlabelled and zero otherwise. We first impose

p (zn = 1|yn = 0) = 0; (29)

in other words, a data point can not be from the category yn = 0 and be
unlabelled. We assign probabilities of missing labels to the other classes

p (zn = 1|yn = 1) = γ+ and
p (zn = 1|yn = −1) = γ−.

We see from the graphical representation in Figure 3 that zn is d-separated
from xn. Thus when yn is observed, the posterior process is updated by using
p (yn|fn). On the other hand, when the data point is unlabelled the posterior
process must be updated by p (zn|fn) which is easily computed as:

p (zn = 1|fn) =
∑
yn

p (yn|fn) p (zn = 1|yn) .
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Fig. 3. Graphical representation of the null category model. The fully-shaded nodes
are always observed, whereas the lightly-shaded node is observed when zn = 0.

The “effective likelihood function” for a single data point, L (fn), therefore takes
one of three forms:

L (fn) =

⎧⎨
⎩

H
(
−
(
fn + 1

2

))
for yn = −1, zn = 0

γ−H
(
−
(
fn + 1

2

))
+ γ+H

(
fn − 1

2

)
for zn = 1

H
(
fn − 1

2

)
for yn = 1 zn = 0

.

The constraint imposed by (29) implies that an unlabelled data point never
comes from the class yn = 0. Since yn = 0 lies between the labelled classes this
is equivalent to a hard assumption that no data comes from the region around
the decision boundary. We can also soften this hard assumption if so desired by
injection of noise into the process model. If we also assume that our labelled data
only comes from the classes yn = 1 and yn = −1 we never obtain any evidence
for data with yn = 0; for this reason we refer to this category as the null category
and the overall model as a null category noise model (NCNM).

4.2 Process Model and Effect of the Null Category

To work within the Gaussian process framework we take

p (fn|xn) = N (fn|μ (xn) , ς (xn)) ,

where the mean μ (xn) and the variance ς (xn) are functions of the input vector.
A natural consideration in this setting is the effect of our likelihood function
on the distribution over fn from incorporating a new data point. First we note
that if yn ∈ {−1, 1} the effect of the likelihood is similar to that incurred in
binary classification, in that the posterior is a convolution of the step function
and a Gaussian distribution. This is comforting as when a data point is labelled
the model acts in a similar manner to a standard binary classification model.
Consider now the case when the data point is unlabelled. The effect of the data
point depends on the mean and variance of p (fn|xn). If this Gaussian has little
mass in the null category region, the posterior is similar to the prior. However, if
the Gaussian has significant mass in the null category region, the outcome may
be loosely described in two ways:

1. If p (fn|xn) ‘spans the likelihood’, Figure 4 (Left), then the mass of the
posterior can be apportioned to either side of the null category region, leading
to a bimodal posterior. The variance of the posterior is greater than the
variance of the prior, a consequence of the fact that the effective likelihood
function is not log-concave (as can be easily verified).
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2. If p (fn|xn) is ‘rectified by the likelihood’, Figure 4 (Right), then the mass of
the posterior is pushed in to one side of the null category and the variance
of the posterior is smaller than the variance of the prior.

Note that for all situations when a portion of the mass of the prior distribution
falls within the null category region it is pushed out to one side or both sides.
The intuition behind the two situations is that in case 1, it is not clear what label
the data point has, however it is clear that it shouldn’t be where it currently is
(in the null category). The result is that the process variance increases. In case 2,
the data point is being assigned a label and the decision boundary is pushed to
one side of the point so that it is classified according to the assigned label.

Fig. 4. Two situations of interest. Diagrams show the prior distribution over fn (long
dashes) the effective likelihood function from the noise model when zn = 1 (short
dashes) and a schematic of the resulting posterior over fn (solid line). Left : The pos-
terior is bimodal and has a larger variance than the prior. Right : The posterior has
one dominant mode and a lower variance than the prior. In both cases the process is
pushed away from the null category.

4.3 Posterior Inference and Prediction

Recall from Section 4.2 that the noise model is not log-concave. When the vari-
ance of the process increases the best Gaussian approximation to our noise model
can have negative variance. This has an important implication: the site precision
can be computed as a negative value (see Section 2.5). This situation is discussed
in [16], where various suggestions are given to cope with the issue. For the IVM
we followed the simplest suggestion: we set a negative variance to zero. As we
have discussed, one important advantage of the Gaussian process framework is
that hyperparameters in the covariance function (i.e., the kernel function), can
be fit by optimising the marginal likelihood. In practise, however, if the process
variance is maximised in an unconstrained manner the effective width of the null
category can be driven to zero, yielding a model that is equivalent to a standard
binary classification noise model4. To prevent this from happening we regularise
with an L1 penalty on the process variances (this is equivalent to placing an
exponential prior on those parameters).
4 Recall, as discussed in Section 2, that we fix the width of the null category to unity:

changes in the scale of the process model are equivalent to changing this width.
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4.4 Semi-supervised Learning: Toy Problem

In all our experiments we used an RBF kernel with a white noise term (see
Appendix B).

We made use of Algorithm 2 without the optional noise parameter update. To
ensure that the width of the null category region wasn’t collapsing with repeated
iteration of the algorithm we used 15 iterations (typically the algorithm found a
good solution after only 4). The parameters of the noise model, {γ+, γ−} could
also be optimised, but note that if we constrain γ+ = γ− = γ then the likelihood
is maximised by setting γ to the proportion of the training set that is unlabelled.

We first considered an illustrative toy problem to demonstrate the capabilities
of our model. We generated two-dimensional data in which two class-conditional
densities interlock. There were 400 points in the original data set. Each point was
labelled with probability 0.1, leading to 37 labelled points. First a standard IVM
classifier was trained on the labelled data only (Figure 5, Left). We then used the
null category approach to train a classifier that incorporates the unlabelled data.
As shown in Figure 5 (Right), the resulting decision boundary finds a region of
low data density and more accurately reflects the underlying data distribution.
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Fig. 5. Results from the toy problem. There are 400 points that are labelled with
probability 0.1. Labelled data points are shown as circles and crosses. data points in
the active set are shown as large dots. All other data points are shown as small dots.
Left : Learning on the labelled data only with the IVM algorithm. All labelled points
are used in the active set. Right : Learning on the labelled and unlabelled data with
the NCNM. There are 100 points in the active set. In both plots, decision boundaries
are shown as a solid line; dotted lines represent contours within 0.5 of the decision
boundary (for the NCNM this is the edge of the null category).

4.5 Semi-supervised Learning: USPS Digits

We next considered the null category noise model for learning of USPS handwrit-
ten digit data set. This data set is fully labelled, but we can ignore a proportion
of the labels and treat the data set as a semi-supervised task. In the experiments
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that followed we used an RBF kernel with a linear component. We ran each ex-
periment ten times, randomly selecting the data points that were labelled. The
fraction of labelled points, r, was varied between 0.01 and 0.25. Each digit was
treated as a separate ‘one against the others’ binary classification class. We also
summarised these binary classification tasks in the standard way with an overall
error rate. In the first of our experiments, we attempted to learn the parameters
of the kernel using 8 iterations of Algorithm 2 to learn these parameters. The
results are summarised in Table 1.

Table 1. Table of results for semi-supervised learning on the USPS digit data. For
these results the model learned the kernel parameters. We give the results for the
individual binary classification tasks and the overall error computed from the combined
classifiers. Each result is summarised by the mean and standard deviation of the percent
classification error across ten runs with different random seeds.

r 0 1 2 3 4
0.010 17.9 ± 0.00 7.99 ± 6.48 9.87 ± 0.00 8.27 ± 0.00 9.97 ± 0.00
0.025 11.4 ± 8.81 0.977 ± 0.10 9.87 ± 0.00 6.51 ± 2.43 9.97 ± 0.00
0.050 1.72 ± 0.21 1.01 ± 0.10 3.66 ± 0.40 5.35 ± 2.67 7.41 ± 3.50
0.10 1.73 ± 0.14 0.947 ± 0.14 3.17 ± 0.23 3.24 ± 0.30 3.33 ± 0.30
0.25 1.63 ± 0.16 0.967 ± 0.09 2.50 ± 0.18 2.90 ± 0.20 2.77 ± 0.08

r 5 6 7 8 9 Overall
0.010 7.97 ± 0.00 8.47 ± 0.00 7.32 ± 0.00 8.27 ± 0.00 8.82 ± 0.00 83.3 ± 7.30
0.025 7.97 ± 0.00 8.47 ± 0.00 7.32 ± 0.00 8.27 ± 0.00 8.82 ± 0.00 64.2 ± 5.08
0.05 7.11 ± 1.94 1.69 ± 0.15 7.32 ± 0.00 7.42 ± 1.89 7.60 ± 2.72 33.3 ± 7.15
0.1 3.02 ± 0.27 1.48 ± 0.05 1.32 ± 0.08 3.40 ± 0.15 1.95 ± 0.25 7.67 ± 0.19
0.25 2.38 ± 0.19 1.25 ± 0.17 1.19 ± 0.06 2.61 ± 0.25 1.59 ± 0.15 6.44 ± 0.22

It is immediately apparent that for values of r below 0.1 a sensible decision
boundary is not found for many of the binary classification tasks. At first sight,
this reflects badly on the approach: many semi-supervised learning algorithms
give excellent performance even when the proportion of unlabelled data is so low.
However here it must be bourne in mind that the algorithm has the additional
burden of learning the kernel parameters. Most other approaches do not have
this capability and therefore results are typically reported for a given set of
kernel parameters. For this reason we also undertook experiments using kernel
parameters that were precomputed by an IVM trained on the fully labelled data
set. These results are summarised in Table 2. As expected these results are much
better in the range where r < 0.1. With the exception of the digit 2 at r = 0.01
a sensible decision boundary was learned for at least one of the runs even when
r = 0.01.

We would certainly expect the results to be better in this second experiment
as we are providing more information (in terms of precomputed kernel parame-
ters) to the model. However it is very encouraging that for r > 0.1 the results of
both experiments are similar.
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Table 2. Table of results for semi-supervised learning on the USPS digit data. For
these results the model was given the kernel parameters learnt by the IVM on the
standard fully labelled data. We give the results for the individual binary classification
tasks and the overall error computed from the combined classifiers.

r 0 1 2 3 4
0.010 3.17 ± 5.17 13.3 ± 14.18 9.87 ± 0.00 3.09 ± 0.22 8.32 ± 2.63
0.025 1.50 ± 0.18 1.52 ± 0.87 5.18 ± 1.95 2.90 ± 0.19 4.36 ± 2.08
0.050 1.50 ± 0.15 1.24 ± 0.22 3.37 ± 0.35 2.85 ± 0.14 3.27 ± 0.19
0.10 1.46 ± 0.09 1.24 ± 0.13 2.82 ± 0.16 2.75 ± 0.19 3.07 ± 0.22
0.25 1.40 ± 0.15 1.31 ± 0.16 2.44 ± 0.21 2.61 ± 0.19 2.80 ± 0.16

r 5 6 7 8 9 Overall
0.010 7.50 ± 0.99 7.70 ± 8.48 12.3 ± 16.91 7.48 ± 1.23 35.2 ± 22.90 42.3 ± 10.05
0.025 5.03 ± 1.30 1.60 ± 0.15 1.93 ± 1.90 4.32 ± 0.45 9.93 ± 8.51 140 ± 6.06
0.050 3.63 ± 0.56 1.49 ± 0.11 1.28 ± 0.09 4.07 ± 0.43 2.59 ± 1.33 8.43 ± 0.66
0.10 2.75 ± 0.22 1.30 ± 0.10 1.30 ± 0.14 3.48 ± 0.26 1.97 ± 0.24 7.24 ± 0.51
0.25 2.32 ± 0.19 1.15 ± 0.10 1.15 ± 0.05 2.74 ± 0.19 1.62 ± 0.16 6.10 ± 0.41

5 Multi-task Learning

In this section, we show how the IVM approach can be extended to handle the
situation where we have multiple independent tasks (see also [12]).

The idea behind multi-task learning is that the tasks are related and that
an algorithm that makes use of these relationships may allow us to adapt to an
additional task with very little training data [1,24,4].

From a Bayesian perspective the multi-task learning problem can be ap-
proached as an instance of the general hierarchical Bayesian approach to shar-
ing strength among related statistical models [9,10]. The component models
(“tasks”) are assumed to be independent given an underlying latent variable;
marginalising across this variable couples these components. Inferentially, learn-
ing about one task updates the posterior distribution for the latent variable,
which provides a sharpened prior distribution for learning a subsequent task.

In our setting, one natural hierarchical model to consider is a model in which
there are M Gaussian process models, p (ym|Xm,θ), for m = 1, . . . ,M , and in
which the kernel hyperparameter θ is shared among the component models. Con-
ditional on θ the component models are assumed independent. While in a full
Bayesian approach we would place a prior distribution on θ and integrate over its
posterior, in the current section we again make the empirical Bayesian approxima-
tion and find a single best-fitting value of θ by maximising the marginal likelihood.

This setup is depicted as a graphical model in Figure 6. We model the output
data for each task, ym, as a GP so that the probability distribution for the matrix
Y, whose columns are ym, is

p (Y|X,θ) =
M∏

m=1

p (ym|Xm,θ)

where each p (ym|Xm,θ) is a Gaussian process.
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Fig. 6. A graphical model that represents a multi-task GP, compare with the single
task GP in Figure 1.

The overall likelihood can be considered to be a Gaussian process over a vec-
tor y that is formed by stacking columns of Y, y =

[
yT

1 . . .yT
M

]T. The covariance
matrix is then

K =

⎡
⎢⎢⎢⎣

K1 0 0 0
0 K2 0 0

0 0
. . . 0

0 0 0 KM

⎤
⎥⎥⎥⎦

and we write
p (y|X,θ) = N (0,K) . (30)

This establishes the equivalence of the multi-task GP to a standard GP. Once
again we obtain an estimate, θ̂, of the parameters by optimising the log-likelihood
with respect to the kernel parameters. These gradients require the inverse of K
and, while we can take advantage of its block diagonal structure to compute this
inverse, we are still faced with inverting Nm × Nm matrices, where Nm is the
number of data points associated with task m: however we can look to the IVM
algorithm to sparsify the GP specified by (30).

It is straightforward to show that the new posterior covariance structure after
k inclusions, qk (f), also is a Gaussian with a block-diagonal covariance matrix,

qk (f) =
M∏

m=1

N
(
fm|μ(m)

i , Σ
(m)
i

)
. (31)

Note that k inclusions in total does not mean k inclusions for each task. Each
block of the posterior covariance is

Σ
(m)
i = Km − M(m)

i

T
M(m)

i ,
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where the rows of M(m)
i are given by

√
ν

(m)
ini

s(m)
i−1,ni

. The means associated with
each task are given by

μ
(m)
i = μ

(m)
i−1 + g

(m)
ini

s(m)
i−1,ni

(32)

and updates of ς
(m)
i can still be achieved through

ς
(m)
i = ς

(m)
i−1 − ν

(m)
i,ni

diag
(
s(m)
i−1,ni

s(m)
i−1,ni

T
)

. (33)

From (32) and (33) it is obvious that the updates of q
(m)
i (fm) are performed

independently for each of the M models. Point selection, however, should be
performed across models, allowing the algorithm to select the most informative
point both within and across the different tasks.

ΔH
(m)
in = −1

2
log
(
1− ν

(m)
in ς

(m)
i−1,n

)
.

We also need to maintain an active, I(m), and an inactive, J (m), set for each
task. The details of the algorithm are given in Algorithm 3.

The effect of selecting across tasks, rather than selecting independently within
tasks is shown by a simple experiment in Figure 7. Here there are three tasks,
each contains 30 data points sampled from sine waves with frequency π

5 and
differing offsets. The tasks used different distributions for the input data: in the
first it was sampled from a strongly bimodal distribution; in the second it was
sampled from a zero mean Gaussian with standard deviation of 2 and in the
third task data was sampled uniformly from the range [−15, 15]. An MT-IVM
with d = 15 and an RBF kernel of width 1 was trained on the data. The data
points that the MT-IVM used are circled. Note that all but six of the points
came from the third task. The first and second task contain less information
because the input data is less widely distributed, thus the MT-IVM algorithm
relies most heavily on the third task. This toy example illustrates the importance
of selecting the data points from across the different tasks.

To determine the kernel parameters, we again maximise the approximation
to the likelihood,

p (Y) ≈
M∏

m=1

p
(
zm|0,Km + B−1

m

)
.

5.1 Multi-task Learning of Speech

We considered a speech data set from the UCI repository [3]. The data consist
of 15 different speakers saying 11 different phonemes 6 times each (giving 66
training points for each speaker). By considering the each speaker as a separate
task we sought kernel parameters that are appropriate for classifying the dif-
ferent phonemes, i.e. we considered that each speaker is independent given the
kernel parameters associated with the phoneme. We used 14 of the speakers to
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Algorithm 3. The multi-task IVM algorithm.
Require: d the number of active points.

for m = 1 toM do
For classification z(m) = 0 and β(m) = 0. For regression substitute appropriate
target values. Take ς

(m)
0 = diag (Km), μ(m) = 0, J(m) = {1, . . . , Nm}, M(m)

0 is an
empty matrix.

end for
for k = 1 to d do

for m = 1 toM do
for all n ∈ J(m) do

compute g
(m)
kn according to (14) (not required for Gaussian).

compute ν
(m)
kn according to (15) or (10).

compute ΔH
(m)
kn according to (19).

end for
{Comment: Select largest reduction in entropy for each task.}
ΔH

(m)
k = maxnΔH

(m)
kn

n
(m)
k = argmaxn∈JΔHkn.

end for
{Comment: Select the task with the largest entropy reduction.}
mk = argmaxm∈JΔH

(m)
k , ni = n

(mk)
k

Update mni and β
(mk)
ni using (17) and (18).

Compute ς
(mk)
i and μ

(mk)
i using (21), (24) and (25).

Append ν
(mk)
ini

s(mk)
i−1,ni

T
to M(mk)

i−1 using (21) to form Mi.

Add ni to I(mk) and remove ni from J(m).
end for

learn the kernel parameters for each phoneme giving 14 tasks. Model evalua-
tion was then done by taking one example of each phoneme from the remaining
speaker (11 points) and using this data to construct a new Gaussian process
model based on those kernel parameters. Then we evaluated this model’s perfor-
mance on the remaining 55 points for that speaker. This mechanism was used for
both an MT-IVM model and an ADF trained GP where points were randomly
sub-sampled.

To demonstrate the utility of the multi-task framework we also built a IVM
based Gaussian process model on the 14 speakers ignoring which speaker was
associated with each data point (924 training points). The kernel parameters
were optimised for this model and then the model was evaluated as above.

For enough information to be stored by the kernel about the phonemes it
needs to be ‘parameter rich’. We therefore used used an ARD RBF kernel in
combination with an ARD linear kernel, a white noise and constant component.
This leads to a total of 15 parameters for the kernel.

The results on the speech data are shown in Figure 8. The convergence of
MT-IVM to ≈ 10% error is roughly 10 times faster than the IVM. The MT-
IVM takes advantage of the assumed independence to train much faster than
the regular IVM. While this data set is relatively small, the structure of this



Extensions of the Informative Vector Machine 81

−15 −5 5 15

−1

1

−15 −5 5 15

−1

1

Task 1 Task 2

−15 −5 5 15

−1

1

Task 3

Fig. 7. Three different learning tasks sampled from sine waves. The input distribution
for each task is different. Points used by the MT-IVM are circled. Note that more
points are taken from tasks that give more information about the function.

experiment is important. One reason for the popularity of the HMM/mixture
of Gaussians in speech recognition is the ease with which these generative mod-
els can be modified to take account of an individual speakers—this is known
as speaker-dependent recognition. Up until now it has not been clear how to
achieve this with discriminative models. The approach we are suggesting may be
applicable to large vocabulary word recognisers and used in speaker-dependent
recognition.

6 Incorporating Invariances

A learning algorithm can often have its performance improved if invariances
present within a data set can be handled. Invariances occur very commonly, for
example, in image based data sets. Images can often be rotated or translated
without affecting the class of object they contain. The brute force approach to
handling such invariances is simply to augment the original data set with data
points that have undergone the transformation to which the data is considered
invariance. Naturally, applying this technique leads to a rapid expansion in the
size of the data set. A solution to this problem that has been suggested in the
context of the SVM is to augment only the support vectors (those data points
that are included in the expansion of the final solution) [18]. If these augmented
points are then included in the final solution they are known as ‘virtual sup-
port vectors’. The resulting algorithm yields state-of-the-art performance on the
USPS data set. Since the IVM also maintains a sparse representation of the data
set it seems natural to use the same idea in the IVM context.
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Fig. 8. Average average time vs error rate for a MT-IVM (solid line with circles) and
sub-sampled ADF-GP (dashed line with crosses) whose kernel parameters are optimised
by considering each speaker to be an independent task and an IVM optimised by
considering all points to belong to the same task (dotted line with pluses).

6.1 USPS with Virtual Informative Vectors

In [18], it was found that the biggest improvement in performance was obtained
when using translation invariances. We therefore only considered translation
invariances in our experiments. We first applied the standard IVM classification
algorithm to the data set using an RBF kernel combined with a linear term. We
used 8 iterations of Algorithm 2 for learning the kernel parameters. We then
took the resulting active set from these experiments and used it to construct
an augmented data set. Each augmented data set had the original active set
examples plus four translations of these examples each by one pixel in the up,
down, left and right directions as prescribed in [18]. This results in an augmented
active set of 2500 points. We then reselected an active set of size d = 1000 from
this augmented active set using the standard IVM algorithm without further
learning of the kernel parameters. The results are shown in Table 3. The resulting
performance of the IVM with ‘virtual informative vectors’ is very similar to that
found through the use of ‘virtual support vectors’. However with the IVM all
the model selection was performed completely automatically.

7 Discussion

In this paper, we have reviewed and extended the IVM algorithm from a standard
classification and regression technique to an approach that can perform semi-
supervised learning; multi-task learning; and incorporate invariances into the
model. The IVM algorithm is as computationally efficient as the popular SVM
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Table 3. Table of results for when using virtual informative vectors on the USPS digit
data. The figures show the results for the individual binary classification tasks and the
overall error computed from the combined classifiers. The experiments are summarised
by the mean and variance of the % classification error across ten runs with different
random seeds.

0 1 2 3 4
0.648 ± 0.00 0.389 ± 0.03 0.967 ± 0.06 0.683 ± 0.05 1.06 ± 0.02

5 6 7 8 9 Overall
0.747 ± 0.06 0.523 ± 0.03 0.399 ± 0.00 0.638 ± 0.04 0.523 ± 0.04 3.30 ± 0.03

and typically as performant [14]. However the IVM algorithm is an approxima-
tion to a Gaussian process and as such it sits within the wider framework of
Bayesian models. This firstly allowed us to use the hierarchical Bayesian ma-
chinery to extend the IVM to so that it may perform multi-task learning and
secondly it allowed us to easily incorporate a simple noise model designed to
accommodate the cluster hypothesis for semi-supervised learning.
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A ADF Mean and Covariance Updates

In Section 2.2, we stated that the updates to the mean function and the co-
variance function for the ADF algorithm could be expressed in terms of the
gradients of
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Zi =
∫

tni (f) qi−1 (f) df .

In this appendix, we derive these results, see also [16,7,21]. First we consider
that the mean under qi (f) is given by

〈f〉 = Z−1
i

∫
ftni (f) qi−1 (f) df .

At this point we could substitute in the relevant noise model for tni (f) and com-
pute the expectation, however it turns out that we can express this expectation,
and the second moment, in terms of gradients of the log partition function. This
is convenient, as it means we can rapidly compute the update formula for novel
noise models. To see how this is done we first note that

∇μi−1
qi−1 (f) = Σ−1

i−1

(
f − μi−1

)
qi−1 (f)

which can be re-expressed in terms of fqi−1 (f),

fqi−1 (f) = Σi−1∇μi−1
qi−1 (f) + μi−1qi−1 (f) ,

now multiplying both sides by Z−1
i tni (f) and integrating over f gives

〈f〉i = μi−1 + Z−1
i Σi−1∇μi−1

∫
tni (f) qi−1 (f) df

= μi−1 + Z−1
i Σi−1∇μi−1

Zi

〈f〉i = μi−1 + Σi−1gi (34)

where we have defined gi = ∇μi−1
logZi. The second moment matrix is given

by 〈
ffT
〉

i
= Z−1

i

∫
ffTtni (f) qi−1 (f) df

Once again we take gradients of qi−1, but this time with respect to the covariance
matrix Σi−1.

∇Σi−1qi−1 (f) =
(
−1

2
Σ−1

i−1 +
1
2
Σ−1

i−1

(
f − μi−1

) (
f − μi−1

)T
Σ−1

i−1

)
qi−1 (f)

which can be re-arranged, as we did for 〈f〉i to obtain〈
ffT
〉

i
= Σi−1 + 2Σi−1Γ

(i)Σi−1 + 〈f〉i μT
i−1

+μi−1 〈f〉
T
i − μi−1μ

T
i−1

where
Γ (i) = ∇Σi−1 logZi.
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The update (7) for the covariance requires〈
ffT
〉

i
− 〈f〉i

〈
fT〉

i
= Σi−1 −Σi−1

(
gigT

i − 2Γ (i)
)
Σi−1. (35)

Substituting (34) and (35) into (6) and (7) we obtain the required updates for
the mean and covariance in a form that applies regardless of our noise model.

μi = μi−1 + Σi−1gi (36)

Σi = Σi−1 −Σi−1

(
gigT

i − 2Γ (i)
)
Σi−1 (37)

B Kernels Used in Experiments

Throughout the experiments discussed in the main text we construct and learn
the parameters of a range of different covariance functions. In this appendix, we
give an overview of all the kernels used.

A covariance function can be developed from any positive definite kernel.
A new kernel function can also be formed by adding kernels together. In the
experiments we present we principally made use of the following three kernel
matrices.

The inner product kernel constrains the process prior to be over linear func-
tions,

klin (xi,xj) = θlinxT
i xj ,

where θ is the process variance and controls the scale of the output functions.
Non linear functions may be obtained through the RBF kernel,

krbf (xi,xj) = θrbf exp
(
−γ

2
(xi − xj)

T (xi − xj)
)
,

where γ is the inverse width parameter, which leads to infinitely differentiable
functions. Finally we considered the MLP kernel [27] which is derived by con-
sidering a multi-layer perceptron in the limit of an infinite number of hidden
units,

kmlp (xi,xj) = θmlp sin−1

⎛
⎝ wxT

i xj + b√(
wxT

i xi + b + 1
) (

wxT
j xj + b + 1

)
⎞
⎠

where we call w the weight variance and b the bias variance (they have interpre-
tations as the variances of prior distributions in the neural network model).

In combination with these kernels we often make use of a white noise process

kwhite (xi,xj) = θwhiteδij
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where δij is the Kronecker delta 5. It is possible to represent uncertainty in the
bias by adding a constant term to the kernel matrix,

kbias (xi,xj) = θbias

where we have denoted the variance, θbias.
All the parameters we have introduced in these kernels need to be con-

strained to be positive. In our experiments, this constraint was implemented
by re-parameterising,

θ = log (1 + exp (θ′)) .

Note that as our transformed parameter θ′ → −∞ the parameter θ → 0 and as
θ′ →∞ we see that θ → θ′.

Finally we can also consider automatic relevance determination (ARD) ver-
sions of each of these covariance functions. These process priors are formed by
replacing any inner product, xT

i xj , with a matrix inner product, xT
i Axj . If A is

positive (semi-)definite then each kernel is still valid. The ARD kernels are the
specific case where A is a diagonal matrix, A = diag (α) and the ith diagonal
element, αi, provides a scaling on the ith input variable, these input scales are
constrained to be between 0 and 1 by re-parameterising with a sigmoid function,

αi =
1

1 + exp (−α′)
.

Unless otherwise stated the kernel parameters were initialised with θlin = 1,
θrbf = 1, γ = 1, θmlp = 1, w = 10, b = 10 and α = [0.999, . . . , 0.999]T.

5 The Kronecker delta δij is zero unless i = j when it takes the value 1.
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Abstract. The arithmetic-coding-based communication system,
Dasher, can be driven by a one-dimensional continuous signal. A belt-
mounted breath-mouse, delivering a signal related to lung volume, en-
ables a user to communicate by breath alone. With practice, an expert
user can write English at 15 words per minute.

Dasher is a communication system based on a beautiful idea from information
theory called arithmetic coding (Witten et al., 1987; MacKay, 2003, Chapter 6).
Arithmetic coding is an optimal method for text-compression using a language
model. By turning arithmetic coding on its head, we obtain an optimal method
for text-generation.

We view a person’s gestures as a source of information, and the sentences
they wish to communicate as the sink of information. Good interface design
maximizes the number of bits per second that are conveyed from the user into
text. Poor interfaces waste the user’s time either by failing to extract all the bits
that the user could easily generate, or by diverting the user’s bits into redundant
activity.

The Dasher approach to interface design decouples the issues of efficient
bit-generation and efficient language-generation. Unlike in most interfaces, a
Dasher-user’s gestures have no relationship to particular symbols in the lan-
guage. Instead, they control navigation in a continuous space whose contents
are laid out using a language model. For demonstrations, or to try Dasher for
yourself – it’s free – please visit www.inference.phy.cam.ac.uk/dasher/.

The objective of this paper is to offer a new method for helping a disabled per-
son to communicate by breath alone. In contrast to widely used switch-scanning
systems, our method makes use of fine breathing control. Of course, not everyone
has fine breath control, but to those who have, we would like to offer the chance
to make use of that information, rather than discard it.

1 How Dasher Works

Imagine writing a piece of text by going into the library that contains all possible
books, and finding the book that contains exactly that text. In this way, writing
can be turned into a navigational task. What is written is determined by where
the user goes. In Dasher’s idealized library, the ‘books’ are arranged alphabet-
ically on one enormous shelf. When the user points at a part of the shelf, the
view zooms in continuously on that part of the shelf. To write a message that
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Fig. 1. A Screenshot of Dasher when the user starts writing hello. The shelf of the
alphabetical ‘library’ is displayed vertically. The space character, ‘−’, is included in
the alphabet after z. In panel (a), the user has zoomed in on the portion of the shelf
containing messages beginning with g, h, and i. Following the letter h, the language
model makes the letters a, e, i, o, u, and y easier to write by giving them more V space.
Common words such as had and have are visible. The pointer’s vertical coordinate
controls the point that is zoomed in on, and its horizontal coordinate controls the rate
of zooming; pointing to the left makes the view zoom out, allowing the correction of
recent errors.
Panel (b) shows screenshots while the user writes ‘any sentence can be written’.
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stop zoom in

drift up

drift down

unzoom

unzoom

Fig. 2. Dasher’s one-dimensional mode. The curved line shows the sequence of two-
dimensional control positions created throughout the range of one-dimensional control
positions. The central point of the display corresponds to no motion; the two ends of
the one-dimensional scale both map to this point. The centre of the one-dimensional
scale is mapped to the three-o-clock position, zooming in at the maximum rate. The
horizontal coordinate on the curve determines the rate of zooming in or out. The radial
lines indicate the direction of motion produced for some positions along the upper half
of the range.

begins ‘hello’, one first steers towards the section of the shelf marked h, where
all the books beginning with h are found. Within this section are sections for
books beginning ha, hb, hc, etc.; one enters the he section, then the hel section
within it, and so forth.

To make the writing process efficient we use a language model, which predicts
the probability of each letter in a given context, to allocate the shelf-space for
each letter of the alphabet, as illustrated in figure 1. The shelf is recursively
chopped up in such a way that the amount of shelf-space devoted to a string
is proportional to its probability. The user’s gestures are turned into steering
commands, controlling the portion of the display zoomed into. If the user can
generate information at a rate of, say, 5 bits per second, then our aim is to feed
these bits to Dasher in such a way that, each second, the display zooms in by a
factor of 25 = 32 on the region containing the text required by the user. When
the language model’s predictions are accurate, many successive characters can
be selected by a single gesture. The language model we use, PPMD5 (Cleary
and Witten, 1984; Teahan, 1995), generates text at an exchange rate of about
two bits per character. Thus the user will be able to write at 5/2 characters
per second, or 30 words per minute. We could only beat this writing speed by
enhancing the rate at which the user generates bits, or improving the predictions
of the language model.

Dasher was first developed to be driven by continuous two-dimensional ges-
tures, delivered via a mouse, touch screen, or gazetracker. Our experiments
showed that, with Dasher, it is easy to spell correctly and hard to make spelling
mistakes. Using an ordinary mouse, typical novice users reach a writing speed of
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25 words per minute after 60 minutes of practice, and expert users can write at
35 words per minute (Ward et al, 2002). Results using Dasher with a gazetracker
were record-breaking: after 60 minutes’ practice, novice users can drive Dasher
using a gazetracker at a speed of about 15 words per minute; expert users can
write at 25 words per minute, and make almost no spelling mistakes (Ward and
MacKay, 2002). We know of no faster method for communication by gaze.

In this paper, we discuss how Dasher can be driven by one-dimensional
gestures.

2 Dasher’s One-Dimensional Mode

In normal two-dimensional Dasher, the information content concerning the text
desired by the user is conveyed entirely through the vertical dimension of the
pointer. The horizontal dimension controls only the speed of text entry. Expert
users of Dasher tend to write at a fairly constant zooming rate such as five bits
per second. Thus the horizontal dimension is scarcely used: an expert uses it
only if he makes a mistake or wishes to slow down, pause or unzoom.

In Dasher’s one-dimensional mode, we select a simple one-dimensional curve
from regular Dasher’s two-dimensional navigation space; the single dimension
conveyed by the user selects the steering direction from this curve (figure 2).
The middle of the curve offers normal forward motion at a fixed zooming rate,
with the one-dimensional coordinate determining the direction of forward mo-
tion. The extreme ends of the curve offer unzooming. As the control is moved
from one end to the other, unzooming blends smoothly into drifting up without
zooming, zooming up, zooming straight forward, zooming down, drifting down,
and unzooming again. (The curve is composed of three half-ellipses.)

We can include control nodes in the Dasher alphabet so that the user can
access special functions such as pausing and stopping by the same zooming
process as is used for writing (much as an escape key can be used to access
special modes in a keyboard-based editor). (Such control nodes were not used in
the experiments described in the present paper.)

3 Experiments with a Breath Mouse

We obtained a continuous one-dimensional breathing signal using a breath mouse
(figure 3).

3.1 Experiments on Novices

Eight volunteers from the Cavendish Laboratory staff with very little or no expe-
rience with Dasher used breath-Dasher for a total of one hour. Of the volunteers,
four were women. Six had English as their first language; one, German; and one,
Italian.

Our protocol was similar to that of Ward and MacKay (2002). We gave users
dictation from Jane Austen’s Emma in five minute periods. Dasher’s language
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Fig. 3. Our first breath mouse, made from an optical mouse, a belt, and a piece of
elastic. The mouse is fixed to a piece of wood, to which a belt is also attached. Two
inches of the belt are replaced by elastic, so that changes in the waist circumference
produce motion of the belt underneath the eye of the mouse. This sensor measures
breathing if the user breathes using their diaphragm (rather than their rib cage). We
oriented the mouse so that breathing in moves the on-screen mouse up and rotates the
pointer anti-clockwise along the curve; and breathing out moves the on-screen mouse
down and rotates the pointer clockwise. The sensor also responds to clenching of the
stomach muscles, but we encourage the user to navigate by breathing normally.

model was trained on Emma, excluding the dictated passages. We used a 54-
letter alphabet (the twenty six letters in both upper and lower case, the space
character and the full stop). Dasher was started and stopped manually at the
beginning and end of each dictation period.

Each subject’s twelve five-minute dictation trials were spaced out over several
days. Two trials could be taken one after one another in a single session, with
a few minutes’ break between. The volunteers were allowed up to two sessions
each day, with a maximum of three days between two consecutive trials. In one
case, three sessions were conducted on a single day, with at least three hours
separating successive sessions.

Before dictation all volunteers were allowed to read a paper copy of the text
that they were expected to write, to try to reduce the frequency of writing-errors
not associated with using Dasher.

After each dictation trial, the subject was offered the chance to adjust the
overall speed of the interface by 5 or 10%.

The writing speeds and error rates for all 8 novices and one expert are shown
in figure 4a. Figure 5 shows the speed settings chosen by the users.
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Fig. 4. (a) Breath-Dasher results for 8 Dasher novices and 1 Dasher expert. Upper
graph shows writing speed in words per minute. Lower graph shows the percentage
of words containing errors. (b) Expert user: results for different training texts and
alphabets.

Observations. Two volunteers (novices 2 and novice 3) had difficulty con-
trolling the breath mouse. We believe they sometimes clenched their stomach
muscles instead of breathing naturally.

Most novices had difficulty finding the full stops. Users had relatively little
practice in using them since in early trials a single sentence was often not com-
pleted. This inexperience was compounded by the large probability of a space
character following the full stop, causing the users to not notice the full stop.
In early experiments the location of the full stop often had to be pointed out.
Although this problem reduced with experience, of all the letters this was the
most persistently troublesome. Users generally dealt with capital letters well.

Some users had difficulties at low speeds because while the low speed was
necessary for them to find their place, once the correct direction had been deter-
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Novices

Expert

Fig. 5. Dasher speed settings chosen by each user at the start of each trial. Dasher’s
maximum speed is specified in bits per second.

mined they found the wait for the interface to zoom uncomfortable. Some users
made use of the feature that the interface could be stopped by breathing right
in or out, to give themselves time to find their place.

When the speed control was set at a low speed, zooming out at extremes
of breath intake was found uncomfortably slow. With experience, this problem
diminished, firstly because users noticed their mistakes earlier and so did not
need to unzoom so much, and secondly because their speed was increased so
they did not have to hold their breath for so long.

3.2 Expert Trials

An expert who was very familiar with Dasher (with perhaps 50 hours of use) and
had considerable experience of the breath mouse (about two hours of practice
before the experiment started) was also tested. We measured his performance
using three different combinations of alphabet and training text, so as to quan-
tify the effects of (1) including upper and lower case characters; (2) choosing a
training text that is well matched to the dictation text.

Figure 4b shows the results.

Alphabet Choice. The top, solid line in figure 4b shows the results where
the training text and alphabet were identical to those used by the novices. The
second line (with crosses) shows results where the alphabet was lower-case only;
the training text was the same Emma corpus. It is striking that increasing the
number of characters from single-case to mixed-case, which doubles the number
of letters available, actually increases the rate of writing.

The explanation for this result is that the mixed-case language is easier for
our language model to predict. Even though the number of possible characters
is twice as great, the entropy of the mixed-case language is slightly smaller.
The cost of selecting occasional upper-case characters is offset by the increased
predictive power of mixed-case contexts.
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Training Text. The expert also took dictation of Emma using a Dasher system
that had been trained on generic English text (the default 300 kilobyte training
file of assorted English sentences from the Dasher website).

The lowest line in figure 4b shows that the writing speed drops by about 33%
when a generic training text is used. Users can therefore expect a 50% increase
in speed if they pre-train Dasher with texts similar to what they intend to write.

3.3 Comparison with Sip-and-Puff

Beginner users of Dasher wrote at 6.0 ± 1.3 words per minute after an hour’s
training, with on average 2.0% of words misspelled. An expert user can write at
over 16 words per minute.

Dasher Expert
Dasher Beginners

Morse Experts
Morse Beginners

Dasher Expert
Dasher Beginners

Morse Experts
Morse Beginners

Fig. 6. Breath-Dasher writing speeds compared with writing speeds achieved by 8 sip-
and-puff Morse code users. Horizontal axis shows time using the interface in minutes, on
a logarithmic scale. Vertical axis is writing speed in words per minute. In the righthand
panel, the results for the Morse users have been averaged. Morse data kindly provided
by Denis Anson (Anson et al, 2003).

For comparison, one method for writing by breath is ‘sip-and-puff’, with sips
and puffs being mapped to the dots and dashes of Morse code. One experienced
sip-and-puff user reports that he can write at 17 words per minute when using
a combination of Morse code and word-completion software.1 Data on learning
curves for this method were kindly provided by Denis Anson. The study by
Anson et al (2003) involved 8 subjects, four of whom had no prior experience
with Morse, and four of whom were radio hams with Morse experience. All
subjects wrote for more than 180 minutes in 20-minute trials. The sip-and-puff
with Morse writing method required no visual feedback, but did use auditory
feedback: users could hear the dots and dashes they entered. The learning curves
for sip-and-puff Morse are compared with those for breath-Dasher in figure 6.
The plateau writing speeds reached by Morse code novices were 4.9, 2.2, 4.1,
and 5.7 words per minute, with error rates of 5%, 4%, 0%, and 4%, respectively.
The plateau values of Morse code experts were only a little better: 4.9, 5.2, 5.3,
and 6.4 words per minute, with error rates of 3%, 4%, 5%, and 2% respectively.
1 http://www.makoa.org/jlubin/ahfeat4.htm
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Another widely-used method for communication by sip-and-puff is a scan-
ning system that offers the users sequences of discrete menus to select from.
Vanderheiden (1985) reported that users of scanning systems wrote at six or less
words per minute; we know experienced users who can write at 12 words per
minute by scanning, but have not been able to find full learning curves for this
method.

We conclude that Dasher has a better learning curve than sip-and-puff with
Morse. Dasher is a promising writing method for a sip-and-puff user who could
convey a continuous signal with their breath. An alternative approach that would
use standard sip-and-puff hardware would be to use one of the two-button modes
of ‘button-Dasher’ (MacKay et al, 2004).

3.4 Development Ideas

In the light of users’ complaints that they occasionally ran short of breath when
using breath Dasher, we propose to include the option for breath-Dasher’s to
add a 0.1Hz periodic signal to the one-dimensional coordinate. To steer Dasher
as before, the user will have to breathe in and out to cancel the effect of this
added signal.

We hope the one-dimensional mode of Dasher will also be useful for hand-held
computers with tilt sensors.

Dasher is free software, distributed under the GNU General Public License,
and available from www.inference.phy.cam.ac.uk/dasher/.
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Abstract. Solving many scientific problems requires effective regression
and/or classification models for large high-dimensional datasets. Experts
from these problem domains (e.g. biologists, chemists, financial analysts)
have insights into the domain which can be helpful in developing power-
ful models but they need a modelling framework that helps them to use
these insights. Data visualisation is an effective technique for presenting
data and requiring feedback from the experts. A single global regression
model can rarely capture the full behavioural variability of a huge multi-
dimensional dataset. Instead, local regression models, each focused on a
separate area of input space, often work better since the behaviour of dif-
ferent areas may vary. Classical local models such as Mixture of Experts
segment the input space automatically, which is not always effective and
it also lacks involvement of the domain experts to guide a meaningful
segmentation of the input space. In this paper we addresses this issue
by allowing domain experts to interactively segment the input space us-
ing data visualisation. The segmentation output obtained is then further
used to develop effective local regression models.

1 Introduction

The work presented here was motivated by a problem in the Chemoinformatics
domain where there is a need for a computational model that relates physico-
chemical properties of compounds with their biological activity. A reliable re-
gression model would allow a screening scientist to predict the biological activity
of compounds and then decide which compounds are worth physically testing.

There are many regression techniques available from the statistical and neural
computing domains. Broadly they can be divided into global and local regression
models. Global models use a single model for the problem which covers the entire
input space. Local regression models use a combination of models, each of which
applies to a smaller part of the input space.

Because of the quantity and diversity of data points (e.g. a huge chemical
compound library), trying to develop a single model to make prediction for all
data points (e.g. chemical compounds in a library) is unlikely to succeed. What is
more likely to be effective is a group of local models, each of which working on a
set of similar data points, in other words, in different regions of the input space.
In this paper, we present a guided local regression approach which first, with
the help of principled visualisation techniques, allows domain experts to create
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an informed segmentation of the input space. Then, we use that segmentation
output to develop local regression models. We compare our results with the
results from classical global and local regression models.

The next section briefly describes the Mixture of Experts (ME) model since
it is related to the guided regression models we introduce here. Section 3 gives
a brief introduction to the Hierarchical Generative Topographic Map (HGTM)
which we use for visualisation and segmentation. In Section 4 we present the
guided local regression models. The experimental results are reported in Section
5. Finally, the paper ends with a discussion in Section 6.

2 Mixture of Experts (ME)

Jacobs et al. introduced the mixture of experts model, which determines a de-
composition of the data as a part of the learning process [1]. In this model, all of
the expert networks, as well as a gating network, are trained together. The goal
of the training procedure is to have the gating network learn an appropriate de-
composition of the input space into different regions, while each expert network
learns to generate the outputs for input vectors falling within a specific region.
The gating network outputs gi(x) can be regarded as the probability that input
x is attributed to expert i. This probabilistic interpretation is ensured because
of the choice of output for the gating network is the softmax activation function:

gi =
exp(γi)∑M

j=1 exp(γi)
, (1)

where the γi(i = 1, 2, ...,M) are the outputs of the gating network and M is the
number of experts.

The error function for the complete model is given by the negative logarithm
of the likelihood with respect to a probability distribution given by a mixture of
M Gaussians of the form

E = −
∑

n

ln

{
M∑
i=1

gi(xn)φi(tn | xn)

}
, (2)

where t is the output vector and the φi(t | x) are regression models with
Gaussian noise.

When the trained network is used to make predictions, the input vector
is presented to the gating network and all of the expert networks. The output
vector of a ME is the weighted mean (with weighting given by the gating network
outputs) of the expert outputs:

y(x) =
M∑
i=1

gi(x)φi(x). (3)

The mixture of experts network is trained by minimising the error function (2)
simultaneously with respect to the weights in all of the expert networks and in
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the gating network. The standard choices for gating and expert networks are
generalised linear models (GLM) and multi-layer perceptrons (MLP).

3 Hierarchical Generative Topographic Map (HGTM)

The HGTM [2] is a probabilistic model that provides a hierarchical visualisation
of data. It arranges a set of GTMs [3] and their corresponding plots in a tree
structure T . The GTM models a probability distribution in the high-dimensional
data space by means of a low-dimensional (usually 2-dimensional) latent space.

– In GTM, the non-linear transformation, f : H ⇒ D, from the latent space
to the data space is defined using a Radial Basis Function (RBF) network
with weights W. The density in the latent space is defined as a sum of delta
functions centred on nodes ki. The unconditional probability of a data point
x is given by a mixture

p(x | W, β) =
1
M

M∑
i=1

p(x | ki,W, β), (4)

where the ith component density is a Gaussian distribution whose mean is
the image of ki under f with inverse variance β.

– Bayes’ theorem is used to invert the transformation f . The posterior proba-
bility Ri,n (responsibility) that the ith Gaussian generated the point xn, is
given by

Ri,n =
P (xn | ki,W, β)∑C

j=1 P (xn | xj ,W, β)
(5)

In order to visualise a whole dataset in a single plot, the latent space rep-
resentation of the point xn is taken to be the mean,

∑C
i=1 Ri,nki, of the

posterior distribution on H where C is total number of latent space centres.

An example HGTM structure is shown in the Figure 1. In this section we
give a general formulation of hierarchical GTM, more details can be found in [2].

The Root of the hierarchy is at level 1, i.e. Level(Root) = 1. Children of a
model N with Level(N ) = � are at level �+1, i.e. Level(M) = �+1, for all M∈
Children(N ). Each model M in the hierarchy, except for Root, has an associated
non-negative parent-conditional mixture coefficient, or prior π(M | Parent(M)).
The priors satisfy the consistency condition:

∑
M∈Children(N ) π(M | N ) = 1. Un-

conditional priors for the models are recursively calculated as: π(Root) = 1, and
for all other models

π(M) =
Level(M)∏

i=2

π(Path(M)i | Path(M)i−1), (6)
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Fig. 1. Example plot structure for HGTM. Each model corresponds to a visualisation.

where Path(M) = (Root, ...,M) is the N -tuple (N = Level(M)) of nodes defin-
ing the path in T from Root to M.

The distribution given by the hierarchical model is a mixture of leaf models
of T ,

P (x | T ) =
∑

M∈Leaves(T )

π(M)P (x | M). (7)

Non-leaf models not only play a role in the process of creating the hierarchical
model, but in the context of data visualization can be useful for determining the
relationship between related subplots in the hierarchy.

The hierarchical GTM is trained using the EM algorithm to maximize its
likelihood with respect to the data sample ς = {x1,x2, ...,xN}. Training of a
hierarchy of GTMs proceeds in a recursive fashion. First, a base (Root) GTM
is trained and used to visualise the data. Then the user identifies interesting
regions on the visualization plot that they would like to model in greater detail.
In particular, the user chooses a collection of points, ci ∈ H, by clicking on
the plot. These points are used to initialise the next level of GTMs. Voronoi
compartments [4] are defined in the data space by the mapped points fRoot(ci) ∈
D, where fRoot is the map of the Root GTM. The child GTMs are initialised
by local PCA in the corresponding Voronoi compartments. After training the
child GTMs and seeing the lower level visualization plots, the user may decide
to proceed further and model in greater detail some portions of the lower level
plots, etc. At each stage of the construction of an hierarchical GTM, the EM
algorithm alternates between the E- and M-steps until convergence is satisfactory
(typically after 10-20 iterations).

We can calculate magnification factors using the Jacobian of the GTM map
f [5]. Magnification factor plots are used to observe the amount of stretching
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in a GTM manifold on different parts of the latent space which helps in outlier
detection and cluster separation. Tiňo et. al. [6] derived a closed-form formula
for directional curvature of the GTM projection manifold. Directional curvature
plots allow the user to observe folding in the GTM manifold. Magnification fac-
tors and directional curvatures help the user to decide where to place submodels.

We have developed an interactive software tool which allows a user to see
the magnification factor and directional curvature plots with the actual HGTM
visualisation. The software also provides a parallel coordinate facility to let the
user explore patterns of a few neighbouring points (determined using Euclidean
distance) from the point selected by the user in the latent space. This is useful
for understanding different regions of the latent space as the user can observe
the corresponding data space patterns. The tool can be used by domain experts
to understand and segment vast data.

4 Guided Local Regression Models

The divide-and-conquer approach used in ME discussed in Section 2 can partic-
ularly prove useful in modeling diversities in the input-output mapping. One of
the most important issues in applying a divide-and-conquer strategy is to find
the different regions to divide the input space. Doing it automatically as in ME
might not be effective for a complex dataset.

One of the main differences between the mixture of experts and the guided
regression models presented in this section, is the way of segmenting the input
space. In ME, the gating network learns a decomposition of the input space into
different regions with the training of expert models, while in the guided local
regression models, we let the domain experts interactively decide the decompo-
sition of the input space using a visualisation algorithm and other visualisation
aids, such as magnification factors, directional curvature and parallel coordi-
nates. Thus the segmentation process here is not automatic as in ME but it is
guided by the domain experts.

In this paper we only use a 2-level HGTM tree structure for simplicity, but
the results can be extended to an HGTM of any depth. Consider an HGTM tree
structure, T , as in Figure 1.

Model responsibilities, R, corresponding to all the models,Mi, i = 1, . . . ,M ,
in the HGTM tree structure, T , are calculated as follows:

Ri,n = P (Mi | Parent(Mi),xn) =
π(Mi | Parent(Mi))P (xn | Mi)∑

N∈[Mi] π(N | Parent(Mi))P (xn | N )
,

(8)
where [Mi] = Children(Parent(Mi)).

Imposing P (Root | xn) = 1, the unconditional (on parent) model responsi-
bilities are recursively determined by the formula:

P (M | xn) = P (M | Parent(M),xn)P (Parent(M) | xn). (9)
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The model responsibility matrix, R, has the property

M∑
i=1

Ri,n = 1 ∀ n. (10)

Equation (10) confirms the soft segmentation of the input space we obtain from
the HGTM model. It is similar to the segmentation derived from the softmax
function in the trained gating network in the ME (eq. 1). The soft segmentation
obtained using HGTM is non-linear, so the segmentation regions can have an
arbitrary shape. The individual experts can arbitrarily be linear or non-linear
regression models. The trained HGTM model is then used to train local regres-
sion model, which we name as Guided Mixture of Experts (GME), as specified
in Procedure 1. Notice that in step 2, for the training of a local expert, using the
model responsibility obtained by the trained HGTM model, we select only those
data points which belong to a particular local region. It means that only those
data points which lie in a particular local region are used to train the expert
responsible for modelling that region. In the work presented here, during the
training of a local expert, we do not weight data points with their corresponding
model responsibility. One of our future extensions will be to use responsibili-
ties for weighting during the training. We have already implemented a weighted
Generalised Linear Model.

Procedure 1 (Training)

1. Using a previously trained HGTM visualisation model, calculate the model
responsibility matrix, R, for all the training points for all leaves (eq. 8).

2. Train an expert regression model corresponding to each leaf node. Each ex-
pert, φi(t | x), is trained individually on all the training points, xn, for
which Ri,n is greater than a threshold. Different thresholds can be tried and
validated.

3. During the training of each expert, φi(t | x), possible best architecture is
selected through validation on the local points it is responsible for.

While making predictions for new inputs, in ME, we present inputs to all of
the experts and the gating network. The outputs of the experts are weighted by
the output of the gating network and summed (eq. 3). In the GME, the inputs
are first presented to a trained HGTM visualisation model and responsibilities
for each expert are calculated using (eq. 8). Then the output of each expert is
weighted by the corresponding responsibility and finally summed as shown in
Figure 2. The prediction (testing) procedure, using a trained GME model, is
given below:

Procedure 2 (Testing)

1. Calculate the model responsibility matrix, R, for all the testing points using
the trained HGTM model stored with the trained GME model.
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Fig. 2. Architecture of Guided Mixture of Experts (GME)

2. Each trained expert is presented with all the inputs (see Figure 2). All experts
produce the outputs for the input point, xn, which are then weighted by the
corresponding model responsibilities and summed to get the final output for
that particular input.

yn =
M∑
i=1

Ri,nφi(tn | xn), (11)

where φi(tn | xn) is the output from the trained expert i.

5 Results

Two experiments were carried out: one with a synthetic dataset and one with
Chemoinformatics data.
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5.1 Synthetic Dataset

The data set consisted of around 2900 points, x = (x1, x2, x3)T lying on a two-
dimensional manifold in the three-dimensional Euclidean space. The manifold is
shown in Figure 3 and is described by the equation

x3 = 2
∑

c1,c2∈{−2,2}
exp{−(x1 − c1)2 − (x2 − c2)2}, (x1, x2) ∈ [−4, 4]2. (12)

To have a different mapping in each “hump”, we define the following func-
tions:

y = x1 − x2
2 − x3 ∀x1, x2, x3 0 < x1 < 4, 0 < x2 < 4, and − 2 < x3 < 0,

y = x2
1 + x2 + x3 ∀x1, x2, x3 − 4 < x1 < 0, 0 < x2 < 4, and 0 < x3 < 2,

y = x1 + x2 − x2
3 ∀x1, x2, x3 − 4 < x1 < 0, −4 < x2 < 0, and − 2 < x3 < 0,

y = x1 − x2
2 + x2

3 ∀x1, x2, x3 0 < x1 < 4, −4 < x2 < 0, and 0 < x3 < 2.

From the total dataset of around 2900 data points, 80% of the points were
used as the training set and rest were kept aside for testing. 20% of the training
set was used for validation to choose the model architecture. Figure 4 shows a
trained HGTM output on the testing set of the synthetic dataset.

We trained models with different complexities for MLP, ME and GME. The
validation set error was calculated for all the models and, for each architecture,
the model with the minimum validation set error was selected. The selected
model from a given class was then trained on the whole training set (including
the validation set).
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Fig. 3. A two-dimensional manifold in three-dimensional Euclidean space
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Fig. 4. HGTM visualisation output for the testing set of synthetic data

To analyse the properties of the input-space segmentation obtained from
ME and GME, we measure its average entropy [7]. The average entropy was
calculated as below:

H = − 1
M

M∑
m=1

1
N

N∑
n=1

Pm(xn) logPm(xn), (13)

where Pm(xn) logPm(xn) is defined as 0 if Pm(xn) = 0. For ME, Pm(xn) is the
output of the gating network for the mth expert, and input point xn, while for
GME, Pm(xn) is the model responsibility, Rm,n. For the selected architectures,
the average entropy values for ME and GME were obtained as 0.0621 and 0.0058
respectively. These values reveal that the ME gives a comparatively soft segmen-
tation with more overlaps, while the GME provides a harder segmentation which
separates the input space in to distinct different regions with little overlap which
is also easier for the domain experts to interpret.

Table 1 presents the normalised mean squared error (NMSE) [8] we obtained
for the training and the test sets. The 4th column in Table 1 displays the t-
test significance value compared with the result of the GME. The t-test assesses

Table 1. Regression results for the synthetic dataset

Model Training NMSE Testing NMSE P-value Architecture

MLP 0.1009 0.0968 7.5816e-48 Nhid = 21
ME 0.0433 0.0466 0.0021 Nexperts = 11
GME 0.0234 0.0227 - Nexperts = 4
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whether the means of two groups are statistically different from each other [9].
The smaller the value, the more significant the difference between the means.
Information about which model architecture was selected, using the validation
set, is given in the last column. We note that the GME result is significantly
better than the MLP and ME.

5.2 Chemoinformatics Data

The second experiment was carried out on a real life problem in the Chemoin-
formatics domain where we need to predict the biological activity of chemical
compounds, for a particular target, from 11 physicochemical properties of the
compounds. The dataset (of around 20700 chemical compounds selected ran-
domly from around 1000000 compounds) was divided equally into training and
testing sets. 20% of the training set was kept aside for validation to choose
the model architecture. Figure 5 presents the HGTM visualisation output for a
subset (random 600 compounds, 300 active and 300 inactive) of testing set.

Table 2. Regression results for biological activity prediction

Model Training NMSE Testing NMSE P-value Architecture

MLP 0.8439 0.8458 0.0129 Nhid = 25
ME 0.8370 0.8405 0.0200 Nexperts = 12
GME 0.8104 0.8214 - Nexperts = 7

The results are presented in Table 2. For the selected architectures, the av-
erage entropy values for ME and GME were obtained as 0.1953 and 0.0298
respectively which demonstrates better segmentation obtained by GME. The
GME result is better than the two models, though only at a level of 2%.

6 Discussion

Our approach of using visualisation output to develop guided local regression
models has given better results than the classical ME. That is in line with our
assumption that the segmentation obtained from principled visualisation algo-
rithms, such as HGTM, can be sensibly used for the development of new local
regression models.

The advantage of the approach is that the informed segmentation is obtained
with the help of domain experts who have some understanding of the data in this
way, domain experts are more involved in the model development process. The
disadvantage of GME is that, as a 2 stage process, it requires user interactions
and thus it takes comparatively more time to develop a new model.

Overall, for the synthetic dataset, the local regression models gave better
results than the global regression model. We believe that the principal local
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Fig. 5. HGTM output for the subset of the testing set of chemoinformatics data

regression models, such as ME and GME, will perform well for high dimensional
diverse datasets generally found in drug discovery and bioinformatics domains.

However, the experiments on chemical compounds gave NMSE of more than
0.8 which is not satisfactory for practical use. The relatively high value of NMSE
indicates that the models are close to predicting “in the mean” [8]. After dis-
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cussion with screening scientists, it was realised that the descriptors (11 physic-
ochemical properties) used to predict the biological activities do not contain
enough information to make a robust prediction. Using structure information of
chemical compounds should help in improving regression models performance
since the pharmacophore1 of compounds plays an important role in making a
compound active for a target [10].
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Abstract. Gaussian process prior systems generally consist of noisy measure-
ments of samples of the putatively Gaussian process of interest, where the sam-
ples serve to constrain the posterior estimate. Here we consider the case where the
measurements are instead noisy weighted sums of samples. This framework in-
corporates measurements of derivative information and of filtered versions of the
process, thereby allowing GPs to perform sensor fusion and tomography; allows
certain group invariances (ie symmetries) to be weakly enforced; and under cer-
tain conditions suitable application allows the dataset to be dramatically reduced
in size. The method is applied to a sparsely sampled image, where each sample is
taken using a broad and non-monotonic point spread function. It is also applied to
nonlinear dynamic system identification applications where a nonlinear function
is followed by a known linear dynamic system, and where observed data can be
a mixture of irregularly sampled higher derivatives of the signal of interest.

1 Introduction

Gaussian process priors are increasingly used as a flexible nonparametric model in a
range of application areas (e.g. O’Hagan, 1978; Rasmussen, 1996; Williams, 1998b;
Murray-Smith and Sbarbaro, 2002). In (Solak et al., 2003) we used the fact that the
derivative of a Gaussian process is itself a Gaussian process to integrate function and
derivative observations. This is particularly useful when modeling nonlinear dynamic
systems. Here we generalise the results to arbitrary transformations of a Gaussian
process, which in discrete form can be summarised by a linear transformation. Like
the ‘generalised observations’ obtained from bounded linear functionals introduced in
(Wahba, 1990). We show four major practical advantages this can offer:

1. We can fuse information from multiple sensors, where the (potentially nonlinear)
transformation associated with the sensor can be approximated by a linear weight-
ing on discretisation. GP inference can then solve ill-posed inverse problems.

2. We can add ‘artificial’ data points which introduce prior knowledge by enforcing
certain chosen linear constraints, such as symmetry, or higher-order derivative op-
erators.

3. We can choose n × N linear transformations, where N is the number of points in
the original training set, which reduce the computational complexity to O(n3) +
O(N2). For n � N this can lead to a significant improvement in speed. We show
that such mappings can be derived from smooths of less refined models.

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 110–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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4. In many applications we can choose a series of linear transformations which com-
press the training set, as above, and correspond to multi-scale learning.

2 Transformations of Gaussian Process Priors

Consider N observations of inputs X and outputs Y , where we assume the Y are drawn
from an N -dimensional normal distribution,

Y ∼ N (0, Σ),

where Σ is the N ×N covariance matrix, the elements of which are functions of inputs
X , an N × d matrix. The covariance function is of the form

cov(xi, xj) = v0 exp
(
−
∑

k

wk(xi,k − xj,k)2
)

+ σ2
y ,

and reflects prior beliefs that the target function is smooth, so penalising high-frequency
components. The parameter wk reflects the length-scale of changes in input dimen-
sion k.

We will now assume that instead of observing y’s directly, we observe a transfor-
mation m of the latent variables y. In the continuous case

output =
∫

Ω

system × inputdΩ,

m(t) =
∫

K(t, x) y(x) dx (1)

which in discrete form is

mk =
N∑

j=1

Kkj Yj , (2)

In other words, for the vector of latents Y we observe outputs M = KY , where K
is known. This could, for example, correspond to an inverse problem such as image
restoration, where the observable is the image, the system is the lens, and the scenery
is the input. Note that although the discretised form K is a linear transformation, the
original kernel K(t, x) could represent a nonlinear mapping.

The vector M is therefore drawn from an n-dimensional normal distribution:

M ∼ N (0,KΣKT + ΣM ),

where ΣM is the diagonal matrix of observation variances. If we wish to predict some
M2 given X1,M1,K1, and X2,K2 then the conditional mean and variance are

μ2|1 = K2Σ12K
T
1 (K1ΣKT

1 )−1M1

Σ2|1 = Σ2 −K2Σ12K
T
1 (K1ΣKT

1 )−1K1Σ21K2
(3)

By selecting the transformation K2, associated with the mapping from the latent
space y to the outputs at the test points x2, we can perform inference to any of the
variables chosen. If K2 = I , then we are inferring y directly from observations of M1,
and implicitly solving the inverse problem of finding the conditional mean and variance
of the latent variable y.
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2.1 Learning the Covariance Function Parameters

The log-likelihood, given the training data M1 is

L = − 1
2 log|K1Σ1K

T
1 | − 1

2M
T
1 (K1Σ1K

T
1 )−1M1 − 1

2N1 log 2π.

If we wish to maximise the likelihood, we use the derivative with respect to the hyper-
parameters θ,

∂L

∂θ
= − 1

2 tr
(
(K1Σ1K

T
1 )−1 ∂(K1Σ1K

T
1 )

∂θ

)
+ 1

2M
T
1 (K1Σ1K

T
1 )−1 ∂(K1Σ1K

T
1 )

∂θ
(K1Σ1K

T
1 )−1M1

= − 1
2 tr
(
K1

∂Σ1

∂θ

)
+ 1

2M
T
1 (K1Σ1K

T
1 )−1 ∂(K1Σ1K

T
1 )

∂θ
(K1Σ1K

T
1 )−1M1

(4)

and optimise the hyperparameters using an appropriate routine—we used a conjugate
gradient approach, or use a Markov-Chain Monte Carlo algorithm to implement a nu-
merical integration.

The ability to adapt the parameters of the covariance function means that the regu-
larising effect is automatically estimated from the data, reducing the wk of uninforma-
tive input dimensions (see discussion in Williams, 1998b)—this is important in learning
in general, but especially interesting for the inverse problem aspects of this paper.

If K is uncertain, then we can take a parametric model K(t, x; θ), and identify
θ, or potentially use a second Gaussian process as a prior for the mapping K(t, x).
The covariance function and mean function can be chosen appropriately, depending on
knowledge of the mapping from x, y to m.

2.2 Examples of Transformations

The linear transformation K can be used to perform a number of roles:

Filtering the Data. The K can represent filters applied to the latent variables before
observation, reflecting sensor characteristics or intervening transformation of the states
by other means. As noted above, the sensor characteristics described in K(t, x) could
be nonlinear, changing with state x, while retaining a linear transformation K on dis-
cretisation. Explicitly building the sensor characteristics into the model will tend to be
better conditioned than simply pre-filtering the data with an inverse model.

Enforcing Constraints. We can add new data points which enforce constraints, such
that a weighted sum of outputs equals some constant. For example, symmetry can be
achieved using matrices of the form

Keven =

⎡
⎣1 −1

1 −1
1 −1

⎤
⎦ Kodd =

⎡
⎣1 1

1 1
1 1

⎤
⎦

for

X =
[
x1 x2 x3 −x3 −x2 −x1

]T
M =

[
0 0 0 0 0 0

]T
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which will produce an even or odd function depending on the matrix chosen. Examples
of inference with Gaussian process priors incorporating such symmetry constraints are
shown in Figure 1.

An alternative approach to enforce symmetry would be by appropriate design of the
covariance function, which would be more appropriate for fully symmetric functions.
The use of individual data points as constraints does have potential advantages where
prior knowledge of symmetry is restricted to localised regions.

Differentiation. An example of enforcing weighted constraints is to represent deriva-
tives. These can be approximated by finite differences, e.g. for first and second deriva-
tives,

K ′ =
1

Δx

⎡
⎢⎢⎢⎣

1 −1
1 −1

. . .
. . .
1 −1

⎤
⎥⎥⎥⎦ K ′′ =

1
Δx

⎡
⎢⎢⎢⎣
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

⎤
⎥⎥⎥⎦

where Δx indicates the distance between points in x. We can continue in this manner to
be able to add arbitrary linear combinations of higher-order derivatives, i.e. differential
forms. We can therefore add prior knowledge of combinations of derivatives of any
order, by including fictive pairs of data points (x1, x2), and their known derivative m,
or include information from different sensors which measure different derivatives of y.

3 Fusion of Multiple Transformations of Latent Variables

In the case of an observation vector M composed of a number of vectors Mi = KiY ,
we have

M =

⎡
⎢⎢⎢⎣
M1
M2

...
Mk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
K1
K2

...
Kk

⎤
⎥⎥⎥⎦Y = KY.

We can now integrate multiple observations which might be a mixture of readings from
different physical sensors, artificial data points in the form of constraints on the func-
tion, or differential operators applied to the data, to derive a model based on a latent
variable y which is compatible with all of them. Such consistent integration of multi-
ple observations, constraints and derivatives is far from trivial, as can be observed in
the theoretical and practical problems associated with design and verification of gain
scheduled and fuzzy controllers (Leith and Leithead, 1999).

3.1 Relevance for Solving Inverse Problems

If the filters Ki are derived from the physics of the sensing mechanisms, does this
approach give us any advantages for solving inverse problems? Standard approaches
to inversion of ill-posed problems use regularisation where solution components cor-
responding to small singular values are filtered out. A common approach would use
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Fig. 1. Artificial data points used to locally enforce symmetry. Top: no symmetry constraints.
Centre: odd symmetry constraints. Bottom: even symmetry constraint. Circles are normal ob-
served outputs, crosses are points on x-axis where symmetry constraint has been added. Plots
show model mean ± 2σ as thin solid line and dashed contours. Note that due to the sparse en-
forcement of symmetry, the error region about the inferred symmetric portion of the curve is
looser than on the side with the data.
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Y = K+M = (KTK)−1KTM , where the inversion would be based around SVD
or the Generalised SVD approach, including a filter matrix L would filter the singular
values of K . Specific examples of this include Tikhonov regularisation, where a reg-
ularisation operator Ω(Y ), is added—minimising ‖KY − M‖ + Ω(Y ). See Hansen
(1997) for a review.

In the GP case presented in this paper, the smoothness constraint is provided by
the covariance function. As shown in equation (3), Y = Σ12K

T (KΣKT )−1M . Nu-
merically, the inversion of KΣKT should be better conditioned. Via the covariance
function we effectively include estimated or prior knowledge about noise in Y and M ,
and correlation among elements of Y , which improve the condition number of the ma-
trix KΣKT and have a regularising effect on the solution.

3.2 Example: Reconstruction of Images from Ganglion Cell Signals

Tipping and Bishop (2002) presented a Gaussian process approach to super-resolution
in images, with uniform sampling from a series of low-resolution images. Here we
consider a k × k pixel image measured using noisy sensors, then linearly transformed
by a suite m � k2 of on-center off-surround receptive fields prior to transmission
through a noisy channel. Given the values received, along with a noise model of the
channel and knowledge of the receptive fields, we wish to estimate the original image.
This reconstruction problem, intended to be reminiscent of interpretation of signals
sent through the optic nerve, is shown in Figure 2, with varying levels of sparsity, k =
41,m = 625 and 1009 pixels in image (60% of the original pixels) available.

Inspection of natural images such as that shown in Figure 2 suggests that the use of
a stationary covariance function is inappropriate. Instead we use a nonstationary one,

cov(xi, xj) = v0 sin−1 xT
i Σxj

(1 + 2xT
i Σxi)(1 + xT

j Σxj)
+ δi,jσ

2
y (5)

as described in Williams (1998a), using Rasmussen’s MATLAB implementation.1 This
covariance function corresponds to that of a GP describing a single hidden-layer neural
network of sigmoidal neurons with infinite neurons (Williams, 1998a). The Σ is a diag-
onal matrix with positive entries, weighting each input (and an additional constant one
acting as a bias term).

The idea can be extended to colour images. The ‘ganglion’ cells are now made to
be receptive to one colour only, with the allocation of cells to colours done randomly. A
further area of interest is that we can use the GP to learn covariances between colours
in a natural image, such that if we interpolate between observations we are less likely to
generate spurious artifacts. We added an identifier to the inputs, indicating whether the
pixel was red (1), green (0) or blue (−1). This was compared to the result of training
three independent Gaussian process prior models on the red, green and blue components
of the image, independently. Informal inspection of a number of test images showed
more frequent colour artefacts in the independent GPs model, than in the dependent
one.

1 http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/gp/
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(a) Source image (b) Sparsely presented available pixels

(c) Neuron receptive fields (d) Reconstructed image inferred by GP

Fig. 2. Inverse problem solved using a GP. Source image (top left) is sparsely presented, with
additive noise (top right) to neurons, and responses on output ‘neurons’ measured (bottom left).
Inference in GP model to training data gives inferred reconstructed image (bottom right).

4 Dynamic Systems Applications

In many applications we will have a learning task which involves identifying a nonlinear
subsystem f(x), where we do not have direct access to the outputs y of that subsystem,
but to a transformation of them through another dynamic system m = g(y, z), where
z is the internal state of g(). This transformation may be another subsystem or it could
represent the sensor dynamics. We assume that the dynamics of g(y, z) are known and
investigate identification of f(x) from observed m and x.
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As an example we simulate a system with

y(t) = f(x(t)) = 0.3 x(t)3 + sin(5 x(t)) +N (0, 0.05)
m(t) = g(y, z)

(6)

where there is an unknown initial condition z(0) = z0. The simple discrete-time state-
space system g(y, z) has an output matrix C.

z(t + 1) = Az(t) + By(t)
m(t) = Cz(t)

(7)

M = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B
AB B
A2B AB B
A3B A2B AB B

. . .
AN−1B AN−2B · · · A2B AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Y +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A
A2

A3

A4

...
AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
z0, (8)

where M =
[
m(1) · · · m(N)

]T
, Y =

[
y(1) · · · y(N)

]T
. If we subtract the contribu-

tion of the initial condition z0 from M , we have an effective filter matrix Kd

K = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B
AB B
A2B AB B
A3B A2B AB B

. . .
AN−1B AN−2B · · · A2B AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

and we can apply the filtered Gaussian process approach in a straightforward manner.

4.1 Observing Multiple Derivatives of Time-Series

In many practical engineering applications observations are made with multiple sen-
sors which measure, e.g. position, velocity and acceleration of state variables of inter-
est. These sensors will often have different noise characteristics and different sampling
rates. We would like to be able to combine these variables in a consistent manner. In
Solak et al. (2003) we presented methods which perform inference on derivatives with
respect to the inputs by analytically differentiating the covariance function. The ap-
proach described in this paper allows us to take derivatives with respect to variables not
used by the covariance function.

As a simple example, we can infer the distribution of position from observed higher
derivatives, and occasional noisy observations of position. Using the filters described in
section 2.2,

Kv =
1

Δtv

⎡
⎢⎢⎢⎣
−1 1

−1 1
. . .

. . .
−1 1

⎤
⎥⎥⎥⎦ ,Ka =

1
Δta

⎡
⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

⎤
⎥⎥⎥⎦ , (10)
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where Δtv and Δta are the sampling times of the velocity and acceleration signals.
Similarly using the transposes KT

v or KT
a would allow us to infer a Gaussian process

model of acceleration or velocity signals from position observations. This approach also
guarantees an internally consistent set of higher derivatives, and could therefore be used
as pre-processing technique for system identification and analysis tasks.

This can be combined with other filters associated with the system dynamics as
described in equation (9),

K = Kd

[
Ip Kv Ka

]
(11)

where Ip is the identify matrix of size p for p position observations. General differential
operators could be composed of weighted combinations of the basic matrices, K =
w1Kv + w2Ka. This lets us use Gaussian processes as an alternative to the Functional
Data Analysis methods suggested by Ramsay and Silverman (1997) for inferring higher
derivatives of a function without numerical problems.

4.2 Simulation of Dynamic System

Here we generate a time-series of N = 1000 points from a second order, discrete-
time, linear system, following a nonlinear transformation of the inputs x, as described

in equations (6) and (7), with A =
[

1 1−exp(−Ts)
0 exp(−Ts)

]
, B =

[
Ts−1+exp(−Ts)

1−exp(−Ts)

]
, z0 = 0,

and Ts = 0.1 s is the sample time. Furthermore, in the simulation we include a ve-
locity ‘sensor’, i.e. the observations also include observations of dz/dt. The observa-
tions were subsampled to every 20th position observation, and every fourth velocity
observation.

In Figure 3 we show the training data inputs x, the unobserved outputs y, and
the observed filtered outputs m. The observed outputs are corrupted by white noise
N (0, 0.001).

In Figure 4(b) we show the estimate of f(x) over the range of interest, along with
the true function, and in Figure 4(a) the estimate of the hidden states y, compared to
the actual values. To show the accuracy of the velocity predictions, Figure 5 compares
the inferred, observed and true velocities, and Figure 4(a) shows the estimate of the
hidden states y, compared to the actual values. To show the accuracy of the velocity
predictions, Figure 5 compares the inferred, observed, and true velocities.

5 Discussion

5.1 Learning with Large Data-Sets

A major limiting factor in the acceptance of GP-prior approaches in practice is the
computational effort associated with large training sets, as the complexity grows at
O(N3) for a training set with N points. Attempts to overcome this include the use of
the Nyström method (Williams and Seeger, 2001), selection mechanisms (Seeger et al.,
2003), mixtures of GPs (Shi et al., 2002), and Bayesian committee machine (Tresp,
2000).

A key feature of the filtering approach is that the Ki need not be square matri-
ces. In fact in many applications the filter can represent a significant reduction in the
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(a) Time-series of the hidden y time-series associated with the training data.
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(b) Time-series of observations used by the GP to infer the nonlinear function associated with
the hidden y time-series in (a).

Fig. 3. Time-series of observed and hidden states from the simulation used to generate the training
data

number of data points, so K will be n × N where n � N . Note that in the equa-
tions for the inference and likelihood calculations we needed to invert KΣKT , which
is the major computational hurdle for this method, scaling as O(N3). For nonsquare
K we now need only invert an n × n matrix, as opposed to an N × N . We still need
to calculate the covariance values of Σ for all N points, but this is O(N2). To fur-
ther increase the efficiency of the method we can eliminate points from the calculation
of the covariance matrix Σ which correspond to a column of entries in Ki,j yj which
are below some threshold ε. In such cases, the original observation yj associated with
this column has little impact on the model’s predictions at the chosen test points. In
(Shi et al., 2005) we used a Karhunen-Loeve expansion to choose a subset of points. In
(Solak et al., 2003) we compressed large amounts of observed data close to equilibria
into local linear models, and used these very few parameters as estimated derivative
observations.
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Fig. 4. Learning the unknown nonlinearity. The identified nonlinear function, compared to the
ideal function y(t) = 0.3 x(t)3 + sin(5 x(t)), with ±2σ contours. The actual value of y at
training data is indicated by the points plotted in Figure 4(b), but the GP did not have access to
this information
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Fig. 5. The GP-inferred, observed (including effects of additive noise on the y’s, and true (noise-
free) velocities for a segment of the training time-series

To summarize, when n � N this method results in substantially decreased compu-
tational burden because

complexity =

invert︷ ︸︸ ︷
O(n3) +

covar︷ ︸︸ ︷
O(N2) �

naive︷ ︸︸ ︷
O(N3)
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Bias and Variance. In most machine learning approaches to data-dependent control
of model complexity, the size of the model is reduced in order to trade off model bias
against model variance. For instance, it is common to fit a large neural network to a large
corpus of data, and then prune the network gradually removing weights. As weights are
removed, the computational burden is reduced; the variance decreases; and the bias in-
creases. This results in a tradeoff between bias and variance, meaning there is a point
of best generalisation after some amount of pruning. With less than this amount of
pruning, it is possible to both improve generalisation performance and reduce compu-
tational burden by further pruning. Below it, there is a tradeoff between generalisation
and efficiency.

Here we have a superficially similar situation, in which exemplars can be removed
from the data. As they are gradually removed, the computational burden is reduced, but
the bias and variance both increase. As a result, the tradeoff is solely between com-
putational burden and generalisation performance, with no need to find the point of
best generalisation. Furthermore, since we would expect the exemplars removed first to
contribute least to generalisation, we might expect dramatic computational savings at a
very modest cost in generalisation during the initial phases.

Reusing Effective Kernels from Earlier Models. A practical approach for finding a
suitable K , with n � N , is the use of prior knowledge of the problem to determine
appropriate filters. An alternative is to base the filter on existing approximate models,
which might be less computationally expensive to estimate. We now generalise this idea
to a broader class of model—we take an existing nonlinear representation of the input-
output relationship from any linear-in-the-parameters nonlinear empirical model, and at
any input point of interest, we can calculate the effective kernel of the model. For any
basis function model, such as an RBF network, spline model etc, with basis functions
φi(x), and weighting parameters θi, the estimated output ŷ∗ for a test input x∗ is ŷ∗ =∑

i φi(x∗)θ̂i = Φ(x∗)θ̂, where the parameters are identified using standard approaches,
e.g. θ̂ = Φ(X)+Y . We can now reinterpret the basis function model as smoothing the
training outputs, ŷ∗ = Φ(x∗)Φ(X)+Y , where the vector k∗ = Φ(x∗)Φ(X)+ is the
effective kernel, a weighting of the y’s in the training set for the model prediction at
test point x∗. Repeating this at all points in the training set gives us the smoothing
matrix S = Φ(X)Φ(X)+. The larger the value of the entries Si,j , the more leverage
observation yj has on the prediction of ŷi. We can use this effective kernel as a way of
generating rows of the linear transformation matrix K to create new, filtered training
data. The filter will be well-suited to the specific modelling task, and its application
creates ‘high-value’ data points from weighted combinations of the observed data. This
might provide a useful way to bring Gaussian Processes to the attention of a broader user
base, as modellers who currently use a linear-in-the-parameters model could ‘wrap’ a
Gaussian process around their current best model, getting potentially better lower model
bias, and the benefit of conditional variance estimates.

5.2 Differential Forms and Ease of Implementation

The above derivations assume that measurements correspond to the outputs of known
linear filters applied to the underlying function, and that these linear filters are sim-
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ply weighted sums. The derivation is reasonably straightforward to extend to a broader
class of linear filters corresponding to weighted sums of not just the function itself but
also its derivatives, including potentially higher-order derivatives. This would combine
the derivation above with that of Solak et al. (2003) yielding a theory that treats both
as special cases. However in practice, as we have seen above, it is simple to approxi-
mate derivatives simple weighted sums of nearby points, which fits naturally into the
framework here. The main advantage of this arguably less elegant approach to handling
derivatives is three-fold. First, it avoids the cumbersome notational complexity required
for referring to derivatives as well as the corresponding additional matrices. Second, it
allows standard GP tools to be easily pressed into service for data of this type, making
the approach more accessible to the casual practitioner. And thirdly, it makes it easy for
the exploratory practitioner to constrain their models locally by introducing virtual data
points representing some constraint.

6 Conclusions

We have demonstrated how transformations of Gaussian process priors can, for known
transformations, allow us to use GPs to consistently fuse information from multiple
sensors, which is of immediate practical importance in many engineering applications.
We also demonstrate the use of GPs to solve ill-posed inverse problems. The amount
of noise on both latent variables and observed variables, and the amount of regular-
isation required in the inversion process are automatically optimised during adapta-
tion of the model covariance hyperparameters. More detailed comparison of these ben-
efits with the algorithms currently used in the inverse-problems community is
required.

The incorporation of ‘artificial’ data points is a novel way to introduce prior knowl-
edge by enforcing certain chosen linear constraints, such as symmetry, or higher-order
derivative operators, which is easy to use, and has application in a range of areas. The
reduction in the computational complexity to O(n3) + O(N2) for GP’s may also be
significant in broadening the application base of GP inference, and there is great scope
for extension of the methods to create interesting multi-scale learning algorithms, and
for stepwise optimisation or integration of covariance hyperparameters.

The application of the method to a toy dynamic system indicates the promise this
approach has to real-world system identification tasks where a number of different sen-
sors, each with its own dynamics and noise level, need to be integrated.
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Abstract. We discuss two kernel based learning methods, namely the Regular-
ization Networks (RN) and the Radial Basis Function (RBF) Networks. The RNs
are derived from the regularization theory, they had been studied thoroughly from
a function approximation point of view, and they posses a sound theoretical back-
ground. The RBF networks represent a model of artificial neural networks with
both neuro-physiological and mathematical motivation. In addition they may be
treated as a generalized form of Regularization Networks. We demonstrate the
performance of both approaches on experiments, including both benchmark and
real-life learning tasks. We claim that RN and RBF networks are comparable in
terms of generalization error, but they differ with respect to their model complex-
ity. The RN approach usually leads to solutions with higher number of base units,
thus, the RBF networks can be used as a ’cheaper’ alternative. This allows to uti-
lize the RBF networks in modeling tasks with large amounts of data, such as time
series prediction or semantic web classification.

1 Introduction

The problem of learning from examples (also called supervised learning) is a subject
of great interest. Systems with the ability to autonomously learn a given task, would be
very useful in many real life applications, namely those involving prediction, classifi-
cation, control, etc.

The problem can be formulated as follows. We are given a set of examples (pairs)
{(xi, yi) ∈ Rd × R}N

i=1 that was obtained by random sampling of some real function
f , generally in the presence of noise. To this set we refer as a training set. Our goal is
to recover the function f from data, or find the best estimate of it. It is not necessary
that the function exactly interpolates all the given data points, but we need a function
with good generalization, that is a function that gives relevant outputs also for the data
not included in the training set.

The problem of learning from examples is studied as a function approximation prob-
lem. Given the data set, we are looking for the function that approximate the unknown
function f . It can be done by the Empirical Risk Minimization, i.e. minimizing the func-
tional H [f ] = 1

N

∑N
i=1(f(xi) − yi)2 over a chosen hypothesis space. In section 2 we

will study the problem of learning from examples as a function approximation problem
and show how a regularization network (RN) is derived from regularization theory. In
section 3 we will discuss a learning algorithm for RNs.

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 124–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Alternatively, the problem of learning from examples can be also handled by artifi-
cial neural networks (ANNs). There is a good supply of network architectures and cor-
responding supervised learning algorithms (see [1] for example). In this case the model
— a particular type of neural network — is chosen in advance, and its parameters are
tuned during learning so as to fit the given data. In terms of function approximation, the
Empirical Risk is minimized over the hypothesis space defined by the chosen type of
ANN, i.e. the space of functions representable by this type of ANN. In section 4 we will
describe one type of neural networks — an RBF network — which is closely related to
RN.

In section 5 the performances of RBF network and RN are compared on experi-
ments, including both benchmark and real learning tasks.

2 Regularization Networks

In this section we will study the problem of learning from examples by means of regu-
larization theory. We are given a set of examples {(xi, yi) ∈ Rd × R}N

i=1 obtained by
random sampling of some real function f , and we would like to find this function.

Since this problem is ill-posed, we have to consider some a priori knowledge about
the function. It is usually assumed that the function is smooth, in the sense that two
similar inputs corresponds to two similar outputs and the function does not oscillate
much. This is the main idea of the regularization theory, where the solution is found
by minimizing the functional (1) containing both the data term and the smoothness
information.

H [f ] =
1
N

N∑
i=1

(f(xi)− yi)2 + γΦ[f ], (1)

where Φ is called a stabilizer and γ > 0 is the regularization parameter controlling
the trade off between the closeness to data and the smoothness of the solution. The
regularization scheme (1) was first introduced by Tikhonov [2] and therefore it is often
called a Tikhonov regularization.

Poggio, Girosi and Jones in [3] proposed a form of a smoothness functional based
on Fourier transform:

Φ[f ] =
∫

Rd

ds
|f̃(s)|2

G̃(s)
, (2)

where f̃ indicates the Fourier transform of f , G̃ is some positive function that goes
to zero for ||s|| → ∞ (i.e. 1/G̃ is a high-pass filter). The stabilizer (2) measures the
energy in the high frequency and so penalizes the functions with high oscillations.

It was shown that for a wide class of stabilizers in form of (2) the solution has
a form of feed-forward neural network with one hidden layer, called Regularization
Network, and that different types of stabilizers lead to different types of Regularization
Networks [3,4].

Poggio and Smale in [4] studied the Regularization Networks derived using a Re-
producing Kernel Hilbert Space (RKHS) as the hypothesis space. Let HK be an RKHS
defined by a symmetric, positive-definite kernel function Kx(x′) = K(x,x′). Then if
we define the stabilizer by means of norm in HK and minimize the functional
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s min
f∈HK

H [f ],where H [f ] =
1
N

N∑
i=1

(yi − f(xi))2 + γ||f ||2K (3)

over the hypothesis space HK , the solution of minimization (3) is unique and has the
form

f(x) =
N∑

i=1

ciKxi
(x), (NγI + K)c = y, (4)

where I is the identity matrix, K is the matrix Ki,j =K(xi,xj), and y = (y1, . . . , yN ).
Girosi in [5] showed that for positive definite functions of the form K(x− y) (such as
Gaussian function) the norm in RKHS defined by K is equivalent to stabilizer (2):

||f ||2K =
∫

Rd

ds
|f̃(s)|2

G̃(s)
. (5)

This means, that using such a norm as a regularization term (as in (3)) indeed penalizes
highly oscillating functions f .

3 Learning with Regularization Networks

The form of Regularization Network in (4) leads to the learning algorithm (3.1). The
power of this algorithm is in its simplicity and effectiveness, the drawback is that the
size of the model (a number of kernel functions) is equal to the size of the training
set, and so the tasks with large data set lead to solutions of implausible size. It is also
supposed that the type of kernel function and the regularization parameter γ are chosen
in advance.

Input: Data set {xi, yi}N
i=1 ⊆ X × Y Output: Function f.

1. Choose a symmetric, positive-definite function Kx(x′),
continuous on X ×X.

2. Create f : X → Y as f(x) =
∑N

i=1 ciKxi
(x)

and compute c = (c1, . . . , cN ) by solving

(NγI + K)c = y, (6)

where I is the identity matrix, K is the matrix
Ki,j = K(xi,xj), and y = (y1, . . . , yN), γ > 0 is real number.

Algorithm 3.1

Let us discuss more closely the case of Gaussian kernel K(x,x′) = e
− ‖x−x′‖

b

2

,
which is widely used. Once the width b and the regularization parameter γ are fixed,
the algorithm reduces to the problem of solving linear system of equations (6).
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Since the system has N variables, N equations, K is positive-definite and (NγI +
K) is strictly positive, it is well-posed, i.e. a unique solution exists. We would also
like it to be well-conditioned, i.e. insensitive to small perturbations of the data. In other
words, we would like the condition number of the matrix (NγI + K) to be small
(see [6] to learn more about ill-posed problems). In our case, the condition number can
be make small by setting Nγ large (see Fig. 1 for example on a particular data set).
Unfortunately, the γ parameter cannot be chosen arbitrarily, because with large γ we
lose the close fit to the data.
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Fig. 1. Dependency of errors (on training and testing data sets) and the condition number of the
linear system 6 on the regularization parameter γ

Fig. 1 shows an example of relation between error on training and testing data sets
(by testing data we understand a part of data that were not used during learning, so it
is an estimate of a real performance of the network), condition number and parameter
γ. One can see that for the low values of γ the error on the training set is low, but the
performance on the testing set is poor, i.e. the network have poor generalization ability.
Nevertheless, if γ is set to be too large, the data term in (1) is suppressed and the result
doesn’t fit the data neither on training nor testing set properly.

The parameter b determines the width of the Gaussians, and should reflect the density
of data points. Suppose that the distances between the data points are high, or the widths
are small, then the matrix K has 1s on diagonal and small numbers everywhere else, and
therefore it is well-conditioned. But if the widths are too small the matrix goes to identity
and contains almost no information. On the other hand, if the widths are too large, all
elements of the matrix K are close to 1 and its condition number tends to be high.

The real performance of the algorithm depends significantly on the choice of para-
meters γ and b (see Fig 2). Optimal choice of these parameters in turn depends on a
particular data set.

We estimate both parameters by adaptive grid search and k-fold cross-validation.
Adaptive grid search starts with a coarse grid of pairs (γ, b) defined by user and for
each pair computes the cross-validation error. Then finer grid is evaluated only in the
smaller region containing the pair with the lowest cross-validation error. The process is
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Fig. 2. Dependency of error on testing data set on the choice of regularization parameter γ and
width b

repeated until the cross-validation error stops decreasing. Then the parameters with the
lowest cross-validation error are picked up and used for evaluation of the algorithm on
the whole training set.

4 RBF Neural Networks

An RBF neural network represents a relatively new neural network architecture. In con-
trast with the more classical models (such as multilayer perceptron) the RBF network
contains local units, which was motivated by the presence of many local response units
in human brain. Other motivation came from numerical mathematics, radial basis func-
tions were first introduced as a solution of real multivariate interpolation problems [7].

An RBF network is a feed-forward neural network with one hidden layer of RBF
units and a linear output layer (see Fig. 3). By an RBF unit we mean a neuron with n
real inputs and one real output, realizing a radial basis function (7), such as Gaussian.
Instead of the most commonly used Euclidean norm we use the weighted norm ‖ · ‖C ,
where ‖x‖2

C = (Cx)T (Cx) = xTCTCx.
From the regularization framework point of view, RBF networks belong to the fam-

ily of generalized regularization networks. Generalized regularization networks are RN
with lower number of kernels than data points and also it is not necessary that the ker-
nels are uniform (thus, for example the network with Gaussian kernels may use kernels
with different widths).

The goal of RBF network learning is to find the parameters (i.e. centers c, widths b,
norm matrices C and weights w) so as the network function approximates the function
given by the training set {(xi,yi) ∈ Rn×Rm}N

i=1. There is a variety of algorithms for
RBF network learning, in our previous work we studied their behavior and possibilities
of their combinations [8,9]. The two most significant algorithms,Three step learning and
Gradient learning, are sketched in Algorithm 4.1 and Algorithm 4.2. See [8] for details.
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y(x) = ϕ
‖ x − c ‖C

b
(7)

fs(x) =
h

j=1

wjsϕ
‖ x − cj ‖Cj

bj
(8)

Fig. 3. a) RBF network architecture b) RBF network function

Input: Data set {xi,yi}N
i=1 Output: {ci, bi, Ci, wij}j=1..m

i=1..h

1. Set the centers ci by a k-means clustering.
2. Set the widths bi and matrices Ci based on relative

position of ci.
3. Set the weights wij by solving ΦW = D.

Dij =
N∑

t=1

ytje
−

‖xt−ci‖Ci
bi

2

, Φqr =
N∑

t=1

e
−

‖xt−cq‖Cq
bq

2

e
− ‖xt−cr‖Cr

br

2

Algorithm 4.1

Input: Data set {xi,yi}N
i=1 Output: {ci, bi, Ci, wij}j=1..m

i=1..h

1. Put the small part of data aside as an evaluation set
ES, keep the rest as a training set TS .

2. ∀j cj(i) ← random sample from TS1, ∀j bj(i), Σ−1
j (i) ← small

random value, i ← 0
3. ∀j, p(i) in cj(i), bj(i), Σ−1

j (i):
Δp(i) ← −ε δE1

δp + αΔp(i− 1), p(i) ← p(i) + Δp(i)
4. E1 ←

∑
x∈TS1

(f(x)− yi)2, E2 ←
∑

x∈TS2
(f(x)− yi)2

5. If E1 and E2 are decreasing, i ← i + 1, go to 3,
else STOP. If E2 started to increase, STOP.

Algorithm 4.2
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5 Experiments

The aim of the experimental part of this work was to to assess the relative performance
of RN and RBF networks, and to relate the results to the performance of multilayer per-
ceptrons, wherever possible. We have used two different collections of data to perform
the comparisons.

The first collection is the Proben1 benchmark database [10] which consists of ten
tasks (either classification or approximation) with several hundred data instances and a
dozen or several dozens of inputs (features). Detailed description of the Proben1 data
is given in Tab. 1. The methodology of the experiments follows the procedure proposed
by original author of the database, there are always three different divisions of the data
set into training (2/3) and testing (1/3) data (thus, e.g. from the cancer data we obtain
cancer1, cancer2 and cancer3 sets of training and testing data).

In all results, a normalized error (9) is reported, thus it can be compared across the
tasks. On the other hand, the running times indicated in the following tables should be
considered only a rough indicator of algorithms time complexity. They refer to produc-
tion runs on IBM Blade server with 2GHz Xeon processor and 2GB RAM.

Ets = 100
1
N

N∑
i=1

||yi − f(xi)||2
N number of examples in {(xi,yi)N

i=1}
f network output

(9)

Regularization networks have been trained according to Algorithm 2.1 with cross
validation technique (described in section 3) for setting parameters γ and b. RBF net-
works have been trained by the Gradient algorithm 4.2, the statistics are always com-
puted from 10 repetitions of the runs. A very simple procedure has been applied to
determine the best architecture for RBF networks: a few reasonable sizes of hidden
layer (10, 15, 20, 30 units) have been tried and the best one selected for comparison.
It is possible that a cross-validation might further improve these settings, nevertheless,
current results are already competitive.

Table 1. Overview of Proben1 tasks. Number of inputs, number of outputs, number of samples
in training and testing sets. Type of task: approximation or classification.

Task name Inputs Outputs Train. set Test. set Type
cancer 9 2 525 174 class
card 51 2 518 172 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class
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Table 2. Overview of results obtained by Regularization Network. Error on the training set
Etrain, error on the testing set Etest, winning regularization parameter γ, winning width b and
time needed for the computation.

Task Etrain Etest γ b time
cancer1 2.29 1.76 0.2690 ×10−3 1.63 4:5:49
cancer2 1.82 3.01 0.2642 ×10−3 1.46 3:30:13
cancer3 2.12 2.80 0.4958 ×10−3 1.58 4:22:27
card1 8.80 10.00 1.5963 ×10−3 4.46 3:36:37
card2 7.63 12.53 1.2864 ×10−3 4.31 3:8:30
card3 6.58 12.32 0.3078 ×10−3 4.43 4:10:19
diabetes1 13.94 16.04 1.4590 ×10−3 1.00 5:29:3
diabetes2 13.85 16.81 1.9810 ×10−3 0.97 5:24:10
diabetes3 13.75 15.93 0.2943 ×10−3 1.42 4:42:47
flare1 0.36 0.54 3.6517 ×10−3 5.70 6:19:53
flare2 0.43 0.27 3.6517 ×10−3 4.07 7:26:6
flare3 0.41 0.34 2.5483 ×10−3 4.85 9:2:17
glass1 3.26 6.95 2.4472 ×10−3 0.30 0:31:18
glass2 4.26 7.91 2.1480 ×10−3 0.51 0:24:30
glass3 4.06 7.33 2.3607 ×10−3 0.42 0:26:42
heartac1 4.19 2.78 1.6144 ×10−3 6.51 1:12:13
heartac2 3.47 3.86 0.8467 ×10−3 6.00 0:56:2
heartac3 3.32 5.01 1.0413 ×10−3 6.50 0:55:14
hearta1 3.49 4.40 0.2618 ×10−3 5.74 7:30:12
hearta2 3.59 4.05 0.2996 ×10−3 5.72 8:43:32
hearta3 3.47 4.43 0.3398 ×10−3 5.48 6:11:4
heartc1 9.90 16.02 1.9832 ×10−3 6.51 1:31:35
heartc2 12.48 6.10 1.1665 ×10−3 6.51 1:29:34
heartc3 8.88 12.66 1.9810 ×10−3 3.37 0:47:22
heart1 9.57 13.65 1.5679 ×10−3 2.89 6:37:13
heart2 9.37 13.80 1.3824 ×10−3 3.09 7:30:9
heart3 9.27 15.99 0.9647 ×10−3 3.90 7:29:45
horse1 7.55 11.90 3.7855 ×10−3 3.40 1:10:59
horse2 7.84 15.18 3.7855 ×10−3 3.87 1:6:2
horse3 4.81 13.58 2.4144 ×10−3 2.94 1:27:51
soybean1 0.12 0.66 0.1075 ×10−3 3.04 3:18:12
soybean2 0.23 0.49 0.1433 ×10−3 3.60 3:17:22
soybean3 0.24 0.58 0.1334 ×10−3 3.88 2:4:27

Results of the experiments for RN and RBF networks are shown in Tables 2 and 3
and Figure 4. One can see that while the training error and testing error values are quite
comparable, the running times of the algorithms differ significantly. While typically the
RN needs hours to achieve a particular error (on the above mentioned hardware), the
RBF network needs about 5–10 times less. Finally, Table 4 compares our results with
the ones obtained in [10] for multilayer perceptron networks.

The second batch of data consists of a time series of daily rainfall and runoff values
measured on a small Czech river Ploučnice basin. There is 4 years worth of daily data
divided again into roughly 2/3 of training and 1/3 testing examples. We have tested
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Table 3. Overview of results obtained by RBF network

# units Etrain Etest average time
mean std mean std

cancer1 15 2.31 0.72 2.11 0.01 0:49:18
cancer2 15 1.91 0.26 3.12 0.07 1:1:3
cancer3 15 1.66 0.36 3.19 0.13 0:58:8
card1 10 8.12 0.75 10.16 0.56 0:23:23
card2 10 8.05 0.10 12.81 0.01 0:2:6
card3 10 6.77 0.09 12.09 0.00 0:55:12
flare1 10 0.37 0.01 0.37 0.00 1:12:33
flare2 10 0.41 0.00 0.31 0.00 0:39:3
flare3 10 0.37 0.00 0.38 0.00 0:51:34
glass1 20 5.10 0.14 6.76 0.02 0:4:31
glass2 20 4.93 0.06 7.96 0.00 0:4:51
glass3 20 5.80 0.98 8.06 0.97 0:3:24
heartac1 10 2.26 0.28 3.69 0.07 0:28:27
heartac2 10 1.78 0.19 4.98 0.03 0:28:20
heartac3 10 1.66 0.06 5.81 0.00 0:29:31
hearta1 15 3.08 0.08 4.36 0.00 0:25:12
hearta2 10 3.36 0.07 4.05 0.00 0:20:41
hearta3 10 3.19 0.04 4.29 0.00 0:36:2
heartc1 10 6.07 0.25 16.17 0.06 0:12:24
heartc2 10 7.99 0.19 6.49 0.03 0:21:34
heartc3 10 7.13 0.60 14.35 0.37 0:3:57
heart1 10 9.96 0.39 14.05 0.15 0:20:45
heart2 20 6.36 5.87 11.67 0.46 0:35:8
heart3 15 6.95 6.04 12.02 0.50 0:27:46
horse1 10 10.57 0.21 11.96 0.04 0:10:51
horse2 10 10.04 0.31 16.80 0.10 0:12:19
horse3 10 9.88 0.26 14.56 0.07 0:14:16
soybean1 30 0.28 0.06 0.73 0.00 0:48:32
soybean2 30 0.38 0.04 0.60 0.14 0:20:23
soybean3 30 0.31 0.09 0.72 0.01 0:40:52

series with one or two day history of rainfall and runoff as inputs, predicting next day
runoff (output). Furthermore, two cases — with or without the next day rainfall value
among inputs — have been considered. Thus, in total four different data sets have been
created: 1- or 2-day history, either with or without the current rainfall value.

Both RBF networks and RN have been tested on these data. Results are summarized
in the Table 6. Figure 5 shows the resulting prediction of flow rate by both RN and
RBFN. Again, it can be seen that the performance of both architectures is comparable.
On this example, it seems that RN tend to obtain better results for training error, but
their generalization error is worse.

6 Conclusion

In this paper, two relative kernel-based network architectures have been described, and
their capabilities compared. Several experiments have been performed to test the prac-
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Table 4. Comparison of Etest of RN, RBF and MLP

RN RBF MLP
Etest # units Etest # units Etest arch.

mean std mean std
cancer1 1.76 525 2.11 0.01 15 1.60 0.41 4+2
cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 2.57 0.24 16+8
card1 10.00 518 10.16 0.56 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.01 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.00 10 13.03 0.50 16+8
flare1 0.54 800 0.37 0.00 10 0.74 0.80 32+0
flare2 0.27 800 0.31 0.00 10 0.41 0.47 32+0
flare3 0.34 800 0.38 0.00 10 0.37 0.01 24+0
glass1 6.95 161 6.76 0.02 20 9.75 0.41 16+8
glass2 7.91 161 7.96 0.00 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97 20 10.91 0.48 16+8
heartac1 2.78 228 3.69 0.07 10 2.82 0.22 2+0
heartac2 3.86 228 4.98 0.03 10 4.54 0.87 8+4
heartac3 5.01 228 5.81 0.00 10 5.37 0.56 16+8
hearta1 4.40 690 4.36 0.00 15 4.76 1.14 32+0
hearta2 4.05 690 4.05 0.00 10 4.52 1.10 16+0
hearta3 4.43 690 4.29 0.00 10 4.81 0.87 32+0
heartc1 16.02 228 16.17 0.06 10 17.18 0.79 16+8
heartc2 6.10 228 6.49 0.03 10 6.47 2.86 8+8
heartc3 12.66 228 14.35 0.37 10 14.57 2.82 32+0
heart1 13.65 690 14.05 0.15 10 14.33 1.26 32+0
heart2 13.80 690 11.67 0.46 20 14.43 3.29 32+0
heart3 15.99 690 12.02 0.50 15 16.58 0.39 32+0
horse1 11.90 273 11.96 0.04 10 13.95 0.60 16+8
horse2 15.18 273 16.80 0.10 10 18.99 1.21 16+8
horse3 13.58 273 14.56 0.07 10 17.79 2.45 32+0
soybean1 0.66 513 0.73 0.00 30 1.03 0.05 16+8
soybean2 0.49 513 0.60 0.14 30 0.90 0.08 32+0
soybean3 0.58 513 0.72 0.01 30 1.05 0.09 16+0

tical properties and behavior of these networks both on benchmark and real-world data.
It has been demonstrated that both types of networks represent a vital alternative to the
most common network architecture, the multilayer perceptron, delivering comparable
models in terms of training and generalization error.

Regularization networks have a strong mathematical background, yet in practical
tests they may suffer from longer training times, mostly because of the cross-validation
needed to find suitable values of free parameters (namely the regularization parameter
γ). Another drawback can be a large number of their units — this can in turn some-
times worsen the generalization capabilities of the network trained. Practical experi-
ments have also shown that finding the right value of the regularization parameter is
crucial, since too large γ causes significantly worse error values.
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Table 5. Correlation between various data characteristics and optimal width (the one that wins
in grid search). Characteristics: minimal, maximal and mean distance between two data points,
mean distance of 3, 5, and 10 nearest neighbors of each data point. Computed over Proben1 tasks.

Characteristic Correlation coefficient
min 0.158
max 0.421
mean 0.552
3 nearest neighbors 0.357
5 nearest neighbors 0.360
10 nearest neighbors 0.290
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Fig. 4. Comparison of error values of RBF vs. RN results on training and testing data

Table 6. Results of RN and RBF on Ploucnice data sets. The plo1 and plo2 are data sets for 1-
and 2-day history, the plo1r and plo2r are datasets for 1- or 2-day history with the current rainfall
value

RN RBF
Etrain Etest Etrain Etest

plo1 0.057 0.048 0.059 0.049
plo1r 0.0257 0.0891 0.061 0.051
plo2 0.062 0.182 0.088 0.062
plo2r 0.0611 0.167 0.099 0.092

RBF networks may be trained by a variety of methods, out of which the gradient and
three-step learning usually give the best results in reasonable times. When comparing
time complexity of gradient learning of RBF networks with RN, one usually achieves
5–10 times better values for RBFN in order to achieve similar error. One can think of
using an exhaustive search to find an optimal number of RBF units, which would take
more time. But it is not a common practice to include search for the architecture size
into a training time. It can be concluded that the RBF and Regulation networks both
provide similar approximation and generalization results. Moreover, the RBFN usually

.



Kernel Based Learning Methods: Regularization Networks and RBF Networks 135

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  50  100  150  200  250  300  350  400

Ploucnice

prediction
real data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  50  100  150  200  250  300  350  400

Ploucnice

prediction
real data

Fig. 5. Prediction of flow rate by a) RN b) RBF

have less parameters and take less time to train, thus it seems that at present they are
more suitable for practical tasks, as a ’cheaper’ substitute for RN.

Nevertheless, this work still leaves several problems open for both architectures. In
the case of Regularization networks, one should search for a way to overcome the main
drawback — a long lasting search for γ and b. To us, nothing is known about the depen-
dency of those parameters, and the answer (both positive and negative) could be easily
used to make the search more efficient. Preliminary investigations shows (cf. Tab. 5)
that there probably is not a linear dependency of the width parameter on various char-
acteristics of the data, thus a non-trivial algorithm to finding these is really necessary.
Maybe employing a simple evolutionary algorithm would also help.

For the RBF networks, the area of learning algorithms seems to be more explored.
Not much attention has been paid so far to RBF networks with different sets of basis
functions. These are the topics we plan to address in the future research.
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Redundant Bit Vectors for Quickly Searching
High-Dimensional Regions

Microsoft Research 1 Microsoft Way Redmond, WA 98052 USA

Abstract. Applications such as audio fingerprinting require search in
high dimensions: find an item in a database that is similar to a query.
An important property of this search task is that negative answers are
very frequent: much of the time, a query does not correspond to any
database item.

We propose Redundant Bit Vectors (RBVs): a novel method for
quickly solving this search problem. RBVs rely on three key ideas: 1)
approximate the high-dimensional regions/distributions as tightened hy-
perrectangles, 2) partition the query space to store each item redundantly
in an index and 3) use bit vectors to store and search the index efficiently.

We show that our method is the preferred method for very large
databases or when the queries are often not in the database. Our method
is 109 times faster than linear scan, and 48 times faster than locality-
sensitive hashing on a data set of 239369 audio fingerprints.

1 Introduction

Consider the abstract search problem: given a database of items (described in
some way), and a stream of queries, how can we quickly find an item in the
database that is similar to a query?

This search problem can be solved by mapping the items into geometric
regions (e.g., hyperspheres) or probability distributions in a high dimensional
space. Queries map into points in the same high-dimensional space. To determine
whether a query is similar to an item, we determine whether the query point lies
within the item’s geometric region, or equivalently, whether the query point was
likely to be generated by the item’s probability distribution.

A simple method for executing the search is to perform a linear scan: for
each item, determine whether the item includes the query. For a large number
of items, this linear scan becomes very slow. Therefore, we use indexing: a set
of precomputations whose results are stored in addition to the items. The index
should assist in finding overlapping items more quickly than linear scan, but
without using an excessive amount of extra memory.

This paper introduces Redundant Bit Vectors (RBVs): an indexing technique
that allows us to quickly perform high-dimensional search. We show that RBVs
excel at applications where many of the queries do not correspond to database
items.

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 137–158, 2005.
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1.1 High-Dimensional Search in Audio Fingerprinting

We created RBVs for an important application: audio fingerprinting. A stream-
ing audio fingerprinting system recognizes audio clips in an audio stream [1].
For example, such a system could recognize songs playing on the radio or in
a bar. Audio recognition must be robust to distortions and noise in the audio
stream: for example, radio stations compress broadcast songs in order to fit in
more advertisements.

Audio fingerprinting can be mapped into high-dimensional search by convert-
ing a segment of audio into a vector of features that form the high-dimensional
space. A database of known audio clips then get mapped into points in that
high-dimensional space. For each clip, there is a sphere of acceptable distortions
around each point: common audio distortions will perturb the point by a known
amount. When a stream is being recognized, the sliding windows of the audio
are continually being converted into high-dimensional queries. This stream of
queries is compared to the database. When a query approximately matches a
clip, the stream is identified.

Note that the vast majority of queries to the audio clip database are negative:
there is no match in the database. That is because the database only stores a few
samples from each song, to save space in the database. The stream away from
those samples do not match anything in the database, and hence are negative
queries.

It is important that the audio fingerprinting database be efficient in both time
and space: it must store millions of songs in a database, and recognize queries for
thousands of simultaneous users. Therefore, any indexing of the database must
be smaller than the original database, while simultaneously speeding up search
dramatically.

RBVs are applicable to audio fingerprinting, but are a generic technique.
When machine learning is applied to signals, such as audio, images, or video,
large fractions of the input are not relevant. When these irrelevant inputs are
compared to a database (for detection or recognition), they should be rejected.
We thus believe that high-dimensional search with negative queries should be
common in applications of machine learning to signals. Fragment-based recog-
nition of objects in images is another example of an application of such high-
dimensional search [2].

1.2 Structure of Paper

Section 2 starts with a definition of the high-dimensional search problem, and
Section 2.1 transforms that problem into a more tractable problem. Section 3
describes our RBV algorithm, including pseudo-code described in Section 3.3.
Section 4 puts RBVs in the context of previous work. Section 5 compares RBVs
to the best of the previous algorithms, on artificial data (Section 5.1) and real
audio fingerprinting data (Section 5.2). We discuss extensions and future work
in Section 6 and conclude in Section 7.
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2 Definition of Problem

High-dimensional geometric search problems can be generated in several different
ways. Raw data items can be extremely high-dimensional or not even lie in a
vector space: they typically need to be pre-processed before they can be stored in
a database. This pre-processing can be carried out by random projection [3][4], by
principal components analysis, or by oriented principal components analysis [5].
If the data does not lie in a vector space, it can still get mapped to a vector
space by kernel PCA [6] or multi-dimensional scaling [7].

Once the input space is chosen, the search problem can be formalized. Let i
identify the items in the database (i ∈ {1..N}). Let x ∈ Rd be the location in
the input space of a point with unknown label. Call this point with unknown
label the query. Let yi ∈ Rd be the location of the ith stored item. Let Li be the
label of the ith stored item. We wish to label x with a single label Li for some i,
or label it as “junk” (not in the database). Assume we have models for P (x|Li)
and P (x|junk), with prior probabilities of label Li and junk being P (Li) and
P (junk). Then, simple decision theory leads us to the following search problem:

Problem 1. Decision-theoretic search: Find at least one i such that

P (x|item i)P (i) > P (x|junk)P (junk). (1)

Label x with Li if it exists, or else label it junk.

Strictly, decision theory would have us find the Li with the highest posterior.
However, in practice, it is rare that a query has two labels that are more likely
than junk. Therefore, for efficiency reasons, we allow the search to find one item
that is more likely than junk, then allow it to stop.

Very often, we do not have a good model for “junk”. We often assume that
it is globally constant, or is constant in the region of high density for each item.
We can use this assumption to create our first geometric search problem:

Problem 2. Implicit surface search: Find at least one i such that

fi(x) < ci. (2)

Label x with Li if it exists, or else label it junk.

where fi is a monotonic decreasing function of the likelihood, e.g.,− log(P (x|Li)).
This implicit surface search is now in the realm of geometry. Each function

fi specifies a blob in the input space. We want to find whether any blob overlaps
the query point.

Computing a general implicit surface (e.g., for a mixture of Gaussians) could
be very computationally expensive. Also, we frequently do not have enough
data to fit a complex model for every item. Instead, let us use a single spherical
Gaussian per item. Combining with the negative log function yields our primary
geometric search problem:
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Problem 3. Sphere overlaps point: Find at least one i such that

||x− yi||22 < Ri.

Label x with Li if it exists, or else label it junk.

2.1 Transforming Regions into Hyperrectangles

Problems 1, 2, and 3 are difficult to index, because all of the dimensions are
coupled. That is, for points near the decision boundary, an index needs to know
all of the coordinates to precisely determine which side of the boundary the
point lies on. In high dimensions, most of the volume (or probability mass) of
an item lies near the boundary of the region. Therefore, it is difficult to use
lower-dimensional coordinates to determine whether a point is inside or outside
of a high-dimensional region.

Our idea is to approximate the determination of the decision boundary sur-
face. All problems stated so far are inexact: they allow a non-zero false negative
rate — some items that truly match to item i will be excluded, even with per-
fect indexing. Therefore, let us use a method that may introduce more false
negatives, but with a tunable parameter.

The idea is to approximate problems 1, 2, and 3 by the following problem:

Problem 4. Hyperrectangle overlaps point: Find at least one i such that

max
n

∣∣∣∣xn − yin

εin

∣∣∣∣ < 1

where xn is the nth component of x. Label x with Li if it exists, or else label it
junk.

where yin is the coordinate of the ith item in the nth dimension.
For spherically symmetric distributions or regions (such as Problem 3), we

can reduce the number of parameters per item to 1, with

Problem 5. Hypercube overlaps point: Find at least one i such that

max
n

|xn − yin| < εi

Label x with Li if it exists, or else label it junk.
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Fig. 1. R for the hypersphere and ε for the hypercube that encloses 99.9% of the
probability mass of a unit spherical Gaussian

In general, we select the parameters εin or εi to be “too tight.” That is,
we can dramatically increase the indexability of the data set by approximating
the sphere, regions, etc. with hypercubes that do not enclose the entire region
defined in Problems 2 or 3.

If we have access to the original probability density for item i (in Problem 1),
then we can use Monte Carlo: generate points from the distribution P (x|Li) and
find a hypercube or hyperrectangle that encloses 1− δ of the generated points,
if the desired false negative rate due to indexing is δ.

Alternatively, if the original probability distribution is unknown and we are
solving Problems 2 or 3, we can generate Monte Carlo samples from a uniform
distribution over each region, and then choose a hypercube or hyperrectangle
that encloses 1− δ of those samples.

Using these tight hyperrectangles yields suprisingly small regions to index.
This can be seen in the following two examples. First, consider Problem 1, where
P (x|item i) is a Gaussian with unit variance. If we convert this problem to use
hyperspheres (Problem 3), the radius of the hypersphere that encloses 1 − δ of
the probability mass is simply

R =
√

(χ2
d)

−1 (1 − δ), (3)

where (χ2
d)

−1(1− δ) is the inverse of the cumulative chi-square density function
with d degrees of freedom evaluated at 1−δ, d = the dimensionality of the input
space. In contrast, the ε for a hypercube that encloses 1 − δ of the probability
mass is simply

ε = N−1
(

1− δ

d
, 0, 1

)
(4)

where N−1 is the inverse of the cumulative Gaussian density function.
The R of a hypersphere and the ε of the hypercube are plotted in Figure 1,

for δ = 0.001. As can be seen, the diameter of the sphere than mostly encloses
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the Gaussian grows as
√

d, while the sidelength of the hypercube grows very
slowly, for d > 30.

This surprising result indicates that the vast majority of a Gaussian distri-
bution has very low L∞ distance to the mean. Another way of thinking about
this result is that samples from a Gaussian are very likely to be have distance
from the origin near

√
d, for large d. It is very unlikely for a sample to have

one dimension near
√

d while all other dimensions are near zero. Most of the
probability mass of a Gaussian is in the corners, away from the coordinate axes,
because there are many more corners than axes in high-dimensional space.
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Fig. 2. Fraction of unit hypersphere covered as a function of the sidelength of the
hypercube

To show that this result is not specific to Gaussians, we present Figure 2.
This Figure is computed for Problem 3, where we are trying to fit a hypercube
that encloses a large fraction of the volume of a hypersphere.1

The Figure shows that the size of the hypercube that encloses 99.9% of a
hypersphere is substantially smaller than the size of the circumscribing hyper-
cube (which would have sidelength=2), which would have a false negative rate
of 0. Notice the dramatic savings by using a tight hypercube: in 256 dimensions,
we can save a factor of 10134 in volume by using a tight hypercube instead of
a circumscribing hypercube. This will both reduce the false positive rate and
dramatically reduce the number of hypercubes needed to be searched (as will be
seen in section 5).

1 We generated Figure 2 by drawing uniform random samples from a hypersphere [8],
then sorting them by their L∞ distance to the origin. The x-axis of Figure 2 is then
the L∞ distance and the y-axis is the order in the list (scaled from 0 to 1).
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3 Redundant Bit Vectors

The most straightforward way to solve Problems 4 or 5 is by a brute force
method called “linear scan”. In a linear scan, the bounds of each data item’s
hyperrectangle are checked to determine if the query point x lies within the
hyperrectangle. Linear scan potentially involves performing 2N comparisons.

As an alternative, this paper introduces a technique that, while still linear in
the number of operations, performs the search much faster than a linear scan.
This is accomplished through the careful use of redundancy and precomputation.

3.1 Partition the Query Space

Non-redundant techniques for searching high dimensional data fail because they
uniquely assign data entries to buckets/pages. Since, for truly high dimensional
data, locality properties of data are weak [9], there is no one way of grouping
like data entries together in a way that is frequently helpful during searching.
Recent strategies to cope with this situation involve using redundancy to group
data entries together in multiple ways such that a useful grouping frequently
exists when the structure is queried [10,4].

In this tradition, we propose a way of generating redundancy that is par-
ticularly suited to high dimensional point queries over hyperrectangles. More
specifically, we propose a redundancy strategy based on partitioning the query
space rather than the data space.

In each dimension, we can compare the coordinate of the query point to
intervals spanned by each of the stored item hyperrectangles. Per dimension,
only a subset of the hyperrectangles overlap the query point. Now, notice that
if we move the query point by a small amount, the hyperrectangles that overlap
it stay largely constant: perhaps a few are added or dropped.

We can exploit this spatial structure by creating m bins (or intervals) of
possible query points per dimension and pre-compute which hyperrectangles can
overlap each query bin. These precomputed hyperrectangles are then stored in
a bucket associated with the interval. Our index consists of the set of dm stored
bins and buckets. For any query that lands in a bin, the set of hyperrectangles
stored in the bucket is a superset of the hyperrectangles that overlap the query.
We will use the buckets to systematically exclude possible items from our search.
Thus, the grouping of queries into bins does not introduce false negatives.

Creating an index out of precomputed overlaps is a method for creating
redundancy. To understand why, consider a single item and a single dimension.
The hyperrectangle for that item appears redundantly in many buckets for that
dimension. A query only accesses one bucket, so the algorithm does not need to
backtrack to find all the hyperrectangles that may overlap it.

For example, in Figure 3, the dimension shown is partitioned into 4 bins.
There are six hyperrectangles in the dataset labeled R1−R6. Each bin is associ-
ated with a set of hyperrectangles that represent all possible answers to queries
that land in the bin. Therefore, the bucket associated with the second bin, which



144 J. Goldstein, J.C. Platt, and C.J.C. Burges

bin
Query

R
1

R
2

R
3

R
5

R
4

R
6

Fig. 3. This figure shows one dimension. In each dimension, the location of the query
(the cross) gets assigned to one bin. Knowing the query lands in this partition eliminates
certain rectangles: R2, R5, R6.

corresponds to the highlighted arrow in the drawing, contains the three rectan-
gles R1, R3, and R4. Note that the first bin also contains R1, which means that
R1 is represented twice (once in each bucket). Of course in this figure, the parti-
tion boundaries are given. In general, we will choose these partition boundaries
using a fast heuristic described in Section 3.3.

Now that we have our index, when we run a query, for each dimension, we find
the bin that contains the projected query point (e.g. the highlighted bin in Figure
3). This can be done with either a linear or binary search of bin boundaries.
We then select the associated bucket of hyperrectangles, which is guaranteed
to contain a superset of the correct hyperrectangle answers. Then we perform
set intersection on all the selected hyperrectangle buckets, producing a smaller
superset of the correct answer. Note that the result of the set intersection is all
possible hyperrectangles that overlap a hyperrectangle in query space.

Even though each dimension may not be very selective, the intersection of the
selected dimensions is quite small, since the selectivity of the final intersection is
close to the product of all the individual dimensions’ selectivities. For instance
in our audio fingerprinting application, individual dimension selectivities ranged
from 50−90% (see Figure 4) while the selectivity after the intersection was much
less than 1%.

For each query, this procedure leaves us with a superset of the correct answer.
Since the superset is small compared to the original dataset, we can compute, for
each candidate, whether the query point is actually contained in each candidate
hyperrectangle without incurring the cost of a linear scan.

3.2 Indexing with Redundant Bit Vectors

While the above strategy for using the index to generate and prune candidate
answer sets may sound reasonable at first glance, careful examination yields some
problems. For instance, assume the buckets of hyperrectangles are represented
using arrays of 4 byte data IDs. Given that most buckets found will contain
most of the data entries, the amount of data that must be sorted and combined
for set intersection is close to the amount of data in the dataset. Since sorting
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Fig. 4. For the audio fingerprinting task, average fraction of “1” bits in each bit vector,
per dimension, weighted by bin selection frequency.

is a superlinear operation, this procedure will almost certainly be slower than a
linear scan of the data.

In order to deal more effectively with these buckets, we must use a repre-
sentation for the sets that is both more compact, and allows for linear time set
intersection. Fortunately, bit vector indices [11] provide us with such a represen-
tation.

Instead of representing each bucket using an array of IDs, each bucket will
be represented using a string of N bits. Each bit represents the presence of an
item in the bucket. More precisely, the kth bit of the string is a 1 iff the item
with ID k is in the set.

Figure 5 shows how bit indices are used in our example from Figure 3 to
represent the buckets associated with the given bins. Note that, as mentioned
earlier, R1 is in both the first and second bucket. As a result, the first bit in the
associated bit indices are both set to 1.

A nice consequence of using bit indices to represent the hyperrectangle buck-
ets is that set intersection now becomes a linear bitwise intersection of the as-
sociated bit strings (e.g. logically AND all the bit strings together). Note that
these linear bitwise operations are very efficient since given a CPU with 4 byte
registers, set intersection between 2 sets for 32 data items is performed with 1
CPU operation. A 64-bit processor can process set intersections twice as quickly.
Also, given the ordered nature of performing set intersection, excellent memory
subsystem performance is achieved. Memory accesses become linear in nature
and cache misses are relatively rare, leading to very high bandwidth from the
memory subsystem. Finally, for very dense sets, the individual sets use approx-
imately 1/32 of the space of the ID array approach. All these properties cumu-
latively work to produce an algorithm for set intersection that, while linear in
the number of data entries, is extremely efficient.
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Fig. 5. For each bin, store whether each rectangle overlaps that bin in a bit vector:
the ith bit represents whether the hyperrectangle associated with the ith item in the
database overlaps this query bin.

The final algorithm for performing a query using our index is shown in Al-
gorithm 1.. The first for loop loads the appropriate bit index from the first
dimension into C. Note that the arrays lo and hi will be explained in more detail
later: the algorithm functions as if lo = 1 and hi = N . The second loop iterates
over each dimension beyond the first. For each dimension, the appropriate bit
index is selected and intersected with C. The final loop iterates over C, which
contains the result of all the index intersections, and performs a final test for
each remaining item.

The bit vector representation highlights the redundancy that arises from
query partitioning. If we examine the bits for a single item across all bins for
one dimension, they look like

0000000︸ ︷︷ ︸
item
above
query

1111111111111︸ ︷︷ ︸
item

overlaps
query

000000︸ ︷︷ ︸
item
below
query

Thus, the span of the item hyperrectangle (relative to the bin boundaries)
is stored in a redundant binary code. Only one bit of this binary code need be
accessed for each query.

3.3 Details and Notes

We have not yet described how the partition boundaries are determined. We
employ a heuristic that is designed for a particular dimension, to evenly spread
the selectivity amongst all indices for that dimension. This uniform selectivity
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Algorithm 1. Querying the Redundant Bit Vector index
Require: Database of N items/distributions, Bit vector index B, Bin edge array E,

hi and lo arrays, number of indexed dimensions I , query vector x
j = smallest index such that x1 < E1j

for i =lo[j] to hi[j] do
Ci = B1ji

end for
for k = 2 to I do

j = smallest index such that xk < Ekj

for i =lo[j] to hi[j] do
Ci = Ci&Bkji (once every machine word)

end for
end for
for all i such that Ci = 1 do

if x ∈ itemi then
Finished

end if
end for
If no item found, return empty

is accomplished by keeping the Hamming distance between adjacent bit indices
roughly constant. More precisely, our heuristic first sorts the interval boundaries
of the projected data, resulting in a sorted list of 2N interval boundaries. Given
a user defined number of partitions Q per dimension, we divide the sorted list
into Q maximally equal sized pieces and choose as the partition boundaries the
last elements of the first Q− 1 pieces.

We are now ready to present the complete index-building algorithm shown
in Algorithm 2.. The first for loop calculates and stores the partition edges as
described previously. The space for the bit vectors is then allocated to ensure
that the individual bit vectors are packed linearly in memory. The next for loop
then calculates the actual bit vectors. Finally, the last loop sets lo and hi.

lo and hi are used to reduce the portion of the bit indices that have to be
“AND”ed during query time. If, while querying, the first bit vector selected
begins with 800 “off” bits (100 bytes of 0 values), there is no point in using
the first hundred bytes of any of the indices for this query, since the first index
will ensure that the first 100 bytes of the result is all zeroes. Therefore, for the
first dimension, for each bit index, we keep track of the leading and trailing
number of “off” bits and use this to reduce the work that must be done during
querying. This technique is made most effective by always choosing the most
selective dimension for the first dimension, and by sorting the dataset by the first
dimension. The result is that the “on” bits tend to cluster together somewhere
in the bit index. For instance, the first bit index of the first dimension has many
trailing zeroes while the last bit index of the first dimension has many leading
zeroes.
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Algorithm 2. Building the Redundant Bit Vector index
Require: Database of N d−dimensional vectors xij , hypercube half-sidelength εi for

each vector, number of bins per dimension Q, number of indexed dimensions I .
Sort database by increasing value of most selective dimension
Initialize temp array t[2N ]
for k = 1 to I do

for j = 1 toN do
Append xjk ± εj to t

end for
Sort t
for j = 1 toQ − 1 do

Bin edge array Ekj = t�2jN/Q�
end for

end for
Initialize bitvector B[I, Q,N ] (last dimension packed into machine words)
for k = 1 to I do

for j = 1 toN do
Initialize Bk∗j to all 1
for all i such that xjk + εj ≤ Eki do

Bk,i+1,j = 0
end for
for all i such that xjk − εj ≥ Eki do

Bkij = 0
end for

end for
end for
for j = 1 to Q do

lo[j] = index of first “on” bit in B1j (rounded down to word boundary)
hi[j] = index of last “on” bit in B1j (rounded up to word boundary)

end for

4 Previous Work

There is an extensive literature in speeding up high-dimensional search. In order
to understand the related work, we must transform Problem 3 into one of two
related problems. First, Problem 3 is equivalent to the following problem, if all
of the spheres’ radii are the same:

Problem 6. ε-range search Find at least one i such that

||x− yi||22 < R

Label x with Li if it exists, or else label it junk.

There is an extensive literature in approximately solving Problem 6 (e.g., [12]).
This Problem has been more extensively studied than Problem 3, because it
permits the database to store yi as points, and consider the query as a sphere
around the point x. Thus, only points need to be indexed, not regions.
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The research into Problem 6 has culminated in Locality-Sensitive Hashing
(LSH) [4], which has sublinear time performance. We compare RBV to LSH in
Section 5, below.

LSH operates by randomly projecting an input space into a number of di-
mensions. This random projection can be accomplished by taking a dot product
with a vector drawn from a spherical Gaussian distribution with unit variance.
Each projected dimension is divided into randomly-offset bins, whose width is
proportional to the radius of the sphere in the original space. The bin number
is then a hash function. A number of these hash functions, k, are then grouped
together to form a key in a hash table: the k integers hashed together with an
additional hash function is the key. The index of all items that match that hash
table key are then associated with the key.

LSH maintains a redundant data structure by constructing l different hash
tables in this way, each with their own random projections and random bin
offsets. All l of these hashtables are checked, until either one item that solves
Problem 6 is found, or else all hashtables are searched.

4.1 Nearest Neighbor Search

If we start to solve Problem 6 for small r, and then gradually increase r if no
points are found, then we are solving:

Problem 7. Nearest neighbor search

c = arg min
i
||x− yi||22

Label x with Lc.

Again, there is an extensive literature in exactly or approximately solving
nearest neighbor search in logarithmic time [13][14][15][16][17]. However, these
techniques always force the query to map to one item, even if the item does not
match well. Thus, the methods can spend a lot of index time and space finding
the nearest neighbor, even when the query is clearly junk. Also, these methods
often have exponential dependence on dimensionality. Therefore, we do not test
these methods in this paper.

5 Speed and Memory Comparisons

In order to test the effectiveness of RBVs, we tested them versus LSH and
linear scan. We perform two major tests: first, we test on an artificial dataset,
which can be parameterized to explore dependency on the number of database
items, dimensionality, and the radius of the sphere; second, we test on real audio
fingerprinting data, to check the effectiveness on a problem that we care about.

Both RBV and LSH have a tuning parameter that performs a memory vs
time trade-off. For RBVs, the number of indexed dimensions can affect the speed,
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while for LSH, the number of hashtables can affect the speed. For both RBV
and LSH, the parameter was tuned to optimize speed and the optimal speed was
reported.

All experiments were performed on an unloaded Xeon 2.4 GHz processor
running Windows Server 2003 with 1.5 GB of physical memory. All real numbers
were stored as 4-byte floating point. Because the database of items must be
loaded in RAM, we limited the size of any index to be 800MB. In the figures
below, you can see the LSH memory consumption curves saturating at that level,
which causes upward kinks in the LSH time curves.

In order to ensure a fair comparison, we optimized an LSH implementation.
The most important implementation detail was to first build the hash tables
for LSH using chaining, then copy the hash tables into a single array using
linear probing, where the length of each chain is stored in a separate array.
Since the index is only built once, this saves a large amount of memory: each
entry uses only 16 bytes of memory (in contrast to [4], which used 60 bytes
of memory per entry). As suggested by [4], we used a second hash function to
disambiguate collisions in the main hash table (rather than checking for equality
on the separate components of the first hash function). Following [18], we set
the bin size on the output of each projection to be 4 times the radius of the
sphere in the input space. Finally, as in the RBV linear scan, we halt the search
through the hashtables when a match is found.

5.1 Artificial Data

To test indexing under various conditions, we generated an artificial training set,
which consists of random deviates drawn from a spherical Gaussian distribution
of unit variance. Each point becomes the center of a sphere. All spheres have
equal radius.

We created two kinds of tests: “positive queries” and “negative queries.”
Positive queries are those which are very likely to have a match in the database,
while negative queries are very unlikely to have a match.

We generated positive queries (following [4]) by adding Gaussian random
noise to 1000 randomly selected points in the database. The variance of the
Gaussian noise was selected to introduce a false negative rate of 10−3 (given a
previously chosen radius).

We generated negative queries by generating 1000 randomly selected points
from the unit spherical Gaussian distribution. The radius of the spheres was
chosen to produce a false positive rate of 10−10. Given this low false positive
rate, it is very unlikely that new draws from the same distribution will end up
inside any of the spheres.

The false positive and false negative rates were chosen to be realistic for
a fingerprinting application: the false positive rate (per database item) must
be very low, because there can be tens of millions of items in a fingerprinting
database.

We also tuned the RBV and LSH algorithms to produce a false negative rate
of 10−3, to be compatible with the underlying false negative rate of the problem.
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The false negative rate of the RBV method is tuned by choosing the size of the
hypercubes. This is done by examining Figure 1 and scaling the unit Gaussian
of the Figure to match the variance of the Gaussian used to generate the noise.
For LSH, the false negative rate is tuned by the number of hashtables [19] via
the formula

l = � log(δ)
log(1 − pk)

�, (5)

where l is the number of hashtables, δ is the desired false negative rate, k is the
number of hash functions that are used to generate a key, and p is the probability
that two input vectors that are the sphere radius R apart will collide under the
same hash function. Since we are using Gaussian random projections in LSH,
p = 0.8.

Vary Database Size, Fix Dimensionality, Positive Queries. For the first
experiment, we fix the dimensionality of the Gaussian to be 64, and the radius
of all spheres to be R = 5.6239, to yield a false positive rate of 10−10. For the
RBV, we used a hypercube sidelength of 4.5767. We added Gaussian noise of
variance 0.3020 to items in the database to generate queries. As we add items
to the database, we measure how much time and memory each of the methods
consume.
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Fig. 6. Positive queries: Log-log plot of CPU time for 1000 queries (left) and memory
(right) vs. database size, for RBVs, LSH, LSH limited in size to database size, and
linear scan. In the memory plot, all schemes show the size of the index, except for
linear scan, where the size of the database is plotted.

Our first experimental results are for positive queries, shown in Figure 6. Both
RBV and LSH beat linear scan by a substantial margin. RBV grows linearly
in time and space, being approximately 46 times faster than linear scan and
requiring an average of 53% of the size of the database items to store the bit
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Fig. 7. Negative queries: Log-log plot of CPU time for 1000 queries (left) and memory
(right) vs. database size, for RBVs, LSH, LSH limited in size to database size, and
linear scan. Note that RBV and linear scan consumes the same amount of memory in
this experiment.

vector indices. RBVs reduced the number of items for final linear scanning by
approximately a factor of 700 (compared to the total size of the database).

These positive queries are similar to the experiments performed in [4], which
show sublinear time for LSH. This can be seen in the slope of the LSH line
performance, which corresponds to a scaling of O(N0.60). The speed of LSH
surpasses BVs at approximately 300,000 items. Notice that, at 1,000,000 items,
the memory required by LSH reaches the 800 MB limit, which causes LSH to be
unable to use the optimal number of hash functions and tables, and therefore
slow down.

Unlike RBV, the memory required by LSH grows superlinearly with database
size. Fitting a line to the points in Figure 6 yields a memory requirement that
scales as O(N1.43). This can become an issue when scaling up to large databases:
a 40 million item database would require 350 GB of RAM to store the hashtables,
while the RBV method would require only 5 GB of RAM.

In this experiment, we test LSH in another way: we chose the number of hash
functions k (hence the number of hashtables l) so that LSH takes up as much
memory as the items in the database, then tested LSH’s speed. Interestingly,
in this experiment, forcing LSH to take a linear amount of memory caused it
to have linear time performance: RBVs are an average of 2.8 times faster than
linear-memory LSH.

Thus, for situations where memory is constrained (as in very large databases),
RBV is preferable to both LSH and linear scan.

Vary Database Size, Fix Dimensionality, Negative Queries. Our next
experiment is shown in Figure 7. Here, we present the more realistic scenario for
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Fig. 8. Log-log plot of CPU time for 1000 queries (left) and memory (right) vs. dimen-
sionality, for RBVs, LSH, and linear scan. Results shown for negative queries. False
positive and false negative rates were held constant across dimensionality.

fingerprinting-like search, where the vast majority of queries do not match in the
database. For negative queries, RBV still maintains its superiority over linear
scan. Here, the index requires as much memory as storing all the database items,
and is 38 times faster than linear scan. RBVs reduced the number of items for
final linear scanning by approximately a factor of 200.

For negative queries, LSH becomes much slower. Part of the reason why LSH
is fast on positive queries is because it stops searching the hashtables when it
finds a match. This is not possible on negative queries, so LSH must slow down.
Performing a line fit to the first 4 points in Figure 7, we see that the time for LSH
is still sublinear in time (O(N0.65)), and is still superlinear in memory (O(N1.5)),
but with a much worse constant than RBV. Performing a possibly inaccurate
extrapolation, we would expect LSH to be as fast as RBV for a database of
72 million items, but require 8 terabytes of RAM, while RBV would require 18
gigabytes. Clearly, LSH is not feasible in this situation. Thus, RBV is clearly
the method of choice when negative queries make up even a small fraction of the
input.

As in the positive query case, if we force LSH to have linear growth in memory,
it has linear growth in time: RBV is 148 times faster than LSH with linear
memory.

Fix Database Size, Vary Dimensionality. V To test the behavior of the
algorithms in high dimension, we varied the dimensionality of the Gaussian that
generated the items in the database while keeping the number of database items
at 200,000. There are multiple ways to set the sphere radii as the dimensionality
rises. We chose to keep the false positive rate of the system constant at 10−10,
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Fig. 9. Log-log plot of CPU time for 1000 queries (left) and memory (right) vs. radius
of spheres, for RBVs, LSH, and linear scan. Results shown for negative queries.

Table 1. Parameters used in dimensionality experiments

Dimensionality Sphere Radius Hypercube Sidelength
8 0.1674 0.2399

16 0.9313 1.1405
32 2.6768 2.7111
64 5.6239 4.5767

128 10.0834 6.4372
256 16.5662 8.1340

and the false negative rate constant at 10−3. These choices yielded parameters
as shown in Table 1.

This choice forces the sphere radius to grow as a fraction of the mean in-
terpoint distance, because the distribution of the interpoint distances are ap-
proaching a delta function. This growing radius makes the projections of the
hypercubes ever larger, which interferes with efficient indexing, as can be seen
in Figure 8. Here, linear scan is as efficient as LSH for d = 128, and as efficient
as RBV for d = 256.

Under these severe conditions, all indexing techniques break down in high
enough dimension. However, real high-dimensional problems may have more be-
nign conditions than those in table 1: the techniques need to be tested to see if
they are effective on a particular data set.

Fix Database Size, Vary Sphere Radius. As a final experiment on artificial
data, we fixed the database size to be 200,000 items and the dimensionality at 64.
We shrink the radius of the hyperspheres to see if RBV maintains its superiority
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over LSH, even for easy cases (at very low false positive rates). We maintain
the indexing false negative rates at 10−3, with a RBV sidelength of 0.5033 the
sphere diameter.

The results of this experiment are shown in Figure 9, which shows that, for
negative queries, all indexing techniques get faster when the false positive rate
tends to zero. RBV maintains its superiority over both variants of LSH, although
LSH starts to approach the RBV performance for small sphere radii: RBV is 14
times faster than LSH at radius 5.659, but only 3 times faster at radius 1.1314.

5.2 Real Audio Fingerprinting Data

As a true test of the RBV method, we applied RBV to the audio fingerprinting
task described in [1] and in Section 1.1. In this task, 6 seconds of audio are
represented as a 64-dimensional vector. The database consists of 239369 items,
each item taken from a unique song. An item is compared to a query with
Euclidean distance.

For this test, we used realistic query data: 1000 queries taken from sequential
frames of a single song.

Audio fingerprinting adds additional complexity to indexing methods: the
radii of the spheres are not identical. According to [1], each radius is chosen to
be 0.374 of the average distance of the item to the closest vector taken from 100
randomly chosen songs. This ensures that the false positive rate is more uniform
across the database of items: the radii vary by a factor of 3. The false positive
rate reported in [1] is roughly 10−6.

RBVs can handle variable sphere radii in Algorithms 2. and 1.. The LSH
algorithm needs a fixed radius to compute the hash functions: we use the largest
radius in the database for that radius.

As in the artificial data case, we set the false negative rate for 10−3 for both
RBV and LSH. For RBV, this yields hypercube sidelength Si:

Si = 0.5033Di (6)

where Di is the diameter of the ith hypersphere.
Figure 10 shows the performance of RBVs, linear scan, and LSH on the

real audio fingerprinting database. Because the audio fingerprinting data is not
parameterized, we show the performance of RBVs and LSH as a function of their
speed/memory tradeoff parameters: sweeping the number of indexed dimensions
for RBV, and the number of hash functions used to construct a key in LSH.

For the audio fingerprinting task, RBV is much faster than other techniques.
RBV is 109 times faster than linear scan and requires 3/8 of the memory to store
the database items. RBV is 48 times faster and requires 34 times less memory
than LSH.

We have previously tested SS-trees [15], and R-trees for this task [20], and
found them to be worse than linear scan: we do not present those results here.
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Fig. 10. Log-log plot of CPU time for 1000 queries vs. memory for RBVs, LSH, and
linear scan (one point). Curves are generated by changing the number of indexed
dimensions (for RBVs) and the number of hashtables (for LSH).

6 Extensions and Future Work

So far, this paper has assumed that the query is a point and that we want to
find all data regions that contain the query point. We may also want to test
which data regions spatially overlap a given query region. The query region can
be mapped to a hyperrectangle in the manner described previously for mapping
items. We now are testing overlap between a query hyperrectangle and all item
hyperrectangles.

This test can be accomplished by building two sets of redundant bit vector
indices. The first set divides the query space on the lower bound of a query
hyper-rectangle while the second divides the query space on the upper bound.
In other words, the answer sets associated with the lower bound index contain all
data hyper-rectangles that may spatially overlap a query rectangle whose lower
bound falls into the partition associated with that set. Similarly, the answer
sets associated with the upper bound index contain all data hyper-rectangles
that may spatially overlap a query rectangle whose upper bound falls into the
partition associated with that set. When a query is performed, 2 indices are
picked per dimension; one for the lower bound of the query hyper-rectangle and
one for the upper bound. As with previous strategies, all bit indices are “AND”ed
together to generate a candidate list.

Possible future work also includes comparing redundant bit vector indices and
LSH to R-trees and approximate kd-trees. A particularly interesting question is
in the cases where LSH is competetive or better than redundant bit vector indices
(for positive queries), do other techniques like R-Trees or kd-trees outperform
both? This may be possible, since they are also sublinear techniques when applied
to easier problems.
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7 Conclusions

This paper has introduced Redundant Bit Vectors (RBVs), a method guaranteed
to have linear time and memory complexity.

RBVs are built on three key ideas:

1. High-dimensional geometry — We use the fact that we can approximate hy-
perspheres (or more general regions) with hypercubes that are substantially
tighter. This improves the selectivity of the indexing.

2. Partition the queries, not the data — We avoid the difficult task of parti-
tioning the data by partitioning the queries into bins per dimension. These
bins become “coarse queries,” which can be precomputed and stored. These
precomputations form a redundant binary code for the location and size of
the objects. This redundant code means we do not need to backtrack a data
structure to find objects.

3. Bit vectors — We store the precomputed indicies in bit vectors, which gives
two advantages: first, we can become much faster than linear scan by ex-
ploiting the innate 32-way or 64-way bit-wise parallelism of modern CPUs.
Second, our index is extremely compact and takes up less memory than the
database of objects.

Realistic applications, such as audio fingerprinting, can have a large fraction
of negative queries. RBVs are the first high-dimensional indexing scheme that is
much faster than linear scan with a large fraction of negative queries. We showed
that the best previous known algorithm (LSH) is slower than RBVs and requires
an unrealistic amount of memory in this situation.
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Bayesian Independent Component Analysis with Prior
Constraints: An Application in Biosignal Analysis
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Abstract. In many data-driven machine learning problems it is useful to
consider the data as generated from a set of unknown (latent) generators or
sources. The observations we make are then taken to be related to these sources
through some unknown functionaility. Furthermore, the (unknown) number of
underlying latent sources may be different to the number of observations and
hence issues of model complexity plague the analysis. Recent developments in
Independent Component Analysis (ICA) have shown that, in the case where the
unknown function linking sources to observations is linear, data decomposition
may be achieved in a mathematically elegant manner. In this paper we extend
the general ICA paradigm to include a very flexible source model and prior
constraints and argue that for particular biomedical signal processing problems
(we consider EEG analysis) we require the constraint of positivity in the mixing
process.

Keywords: Independent component analysis, biosignal analysis, variational
Bayes, prior constraints.

1 Introduction

Independent Component Analysis (ICA) has been widely used in data analysis and de-
composition in recent years (see, for example, [1,2] for an overview). ICA, typically,
aims to solve the blind source separation problem in which a set of unknown sources
are mixed in some way to form the data that are available. The classic example being
that of multiple speakers in a room with several microphones. Several ICA algorithms
exploit the fact that the probability density functions (pdfs) of mixtures of sources are
more Gaussian (normally distributed) than the source pdfs themselves and hence form-
ing source estimates whose pdfs are maximally non-Gaussian may achieve the goal
of ICA [3,4]. Alternatively, ICA may be seen as a generative model in a probabilistic
framework [5,6,7,8,9]. This has the advantage that, in principle, fully Bayesian models
may be formulated in which priors exist over all the model parameters. This enables,
for example, model selection (to determine e.g. how many sources there are) and the
principled handling of uncertainty and noise. Recently the use of fully Bayesian, very
flexible ICA models has been realized [10,11,12]. The application of ICA techniques
to biomedical signals has received considerable attention in recent years, in part due to
the linear mixing assumptions of ’traditional’ ICA being approximately correct in many
biomedical problems [13,14,15,16,17].
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In this paper we consider the case in which constraints exist in our beliefs regarding
the mixing process and the sources. In particular we investigate the issue of enforcing
positivity onto the ICA model. As the models are evaluated in a fully Bayesian manner
model selection may be applied to infer the complexity of data representation in the
solution space.

This paper is organised as follows. We first introduce the basic concepts of ICA
theory and our data decomposition goals. The issue of why a constrained model may be
more appropriate are then discussed. Details of the variational Bayes paradigm under
which model inference is performed are then presented. Representative results are given
in the next section followed by conclusions and discussion.

We have decided to concentrate on concepts and example results in this paper.
Whilst the mathematical details of the theory are of importance, they are fully cov-
ered elsewhere, for example in [10,11,12,18]. The problems associated with ICA are an
intriguing case study in model complexity selection and inference in a scenario where
very little information regarding the ’ground truth’ is available. As such, then, this pa-
per offers evidence that probabilistic modelling may be useful in overcoming many of
these problems in a principled manner. It must be remembered that these are generic
issues which plague many data-driven machine learning problems.

2 Generic ICA Theory

In general, we have a set of observations vectors, x ∈ RN which are believed to be
caused by a set of underlying latent sources, s ∈ RM , which we cannot directly access.

We start by reviewing the simplest ICA model, that of noiseless mixing; in part to
introduce nomenclature but also to consider the more general issue of decompositional
models. We model the observations vector (at some time instant, t), x[t], as a linear
mixing via the (time-invariant) mixing matrix, A, of a source vector (at the same time
instant – we do not here consider convolutive or time-delay models), s[t].

x[t] = As[t]. (1)

The above vector equation may be re-written in matrix form as:

X = AS (2)

in which the observations form a matrix, X, which is modeled as a product of two other
matrices. It is instructive to see this as a basis model in which A are the mixings of a
matrix of basis responses, S, which we may interpret as the set of unknown (i.e. latent,
or hidden) sources.

Without constraint, Equation 2 is ill-posed. ICA can be hence seen as a member of
a family of approaches which impose constraint into the solution space to all evaluation
of the matrix-product decomposition.

Principal Component Analysis [19] avoids the problem of an ill-posed solution
space by making constraints of orthogonality. ICA, on the other hand, allows solu-
tions to Equation 2 by forcing independence between the components of the basis. If
we regard the unknown sources as random variables, whose joint density is p(s) then
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this independence means that the joint density over the basis sources factorizes such
that:

p(s[t]) =
M∏
i=1

pi(si[t]) (3)

It is worth noting that independence does not imply orthogonality, indeed the latter is
a considerably weaker constraint. Forcing independence is sufficient to make the prob-
lem well-posed up to an arbitrary permutation and scaling of the basis. This means that
sources may be recovered using ICA but their scaling is arbitrary (and many implemen-
tations will simply normalise to a constant power) and there is, unlike PCA, no ‘natural’
ordering. These drawbacks are not significant in practice, however. Seeking a factoriza-
tion of the source densities is equivalent to the minimization of the mutual information
between the inferred sources. This mutual information (MI) measure may be seen as the
canonical objective of all ICA approaches [1]. Direct estimation of the MI, however, is
computationally impractical for most problems and ICA algorithms typically exploit
either approximate measures (such as higher order statistics of the sources) or make
parametric models for the sources from which MI may be obtained analytically [6,8,9].
It is this latter approach which we take in this paper.

In most cases involving data analysis, we may not be confident that the observations
we make are in the noiseless limit. Incorporating an explicit noise term into the model
has the advantage that it allows the model to be probabilistic (in that a generative likeli-
hood may be formulated). In all the examples presented in this paper we utilize a noisy
ICA model of the form

x[t] = As[t] + n[t]. (4)

The statistics of the noise term are detailed in section 5.3 below.

3 Brain Activity

The activity of the brain may be monitored using small scalp electrodes. The resul-
tant signals are known as electroencephalograms, or EEGs. The clinical use of EEG is
widespread; from the analysis of sleep disorders, the detection and treatment of epilepsy
to analysis of cognitive function. Typical EEG recordings may be made from a large
number (64 or more) electrodes, but it is more common for smaller sets to be used. Our
present knowledge of neurophysiology, though, indicates that the EEG contains infor-
mation from a considerably smaller set of underlying sources of activity. The form of
the transfer from brain (really the cortex - the ’top’ layer of brain) to scalp is a linear
propagation (at least for frequencies in the EEG range, below about 40Hz) [20].

We consider the EEG propagation process as the detection, at the surface of the
scalp, of cortical potentials (sub-cortical potentials are considerably weaker and con-
tribute insignificantly to the surface EEG [20]). To further complicate matters, the effect
of the layer of cerebro-spinal fluid, in particular, is to ‘smear’ potentials generated on the
cortex (via a volume conduction effect) before observation at the scalp surface. Hence
a hypothetical delta function, δ, generated on the cortex will be observed at the surface
of the scalp as some smeared function x, as depicted schematically in Figure 1(a).
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Fig. 1. (a) Volume conduction: The effect of volume conduction is to ‘smear’ a delta function,
δ, on the cortex to some spread function x upon observation on the scalp. (b) Simple EEG
propagation model: In this simple model, an EEG generator (a patch of cortex, for example)
generates a source signal, s. This is detected at the surface of the scalp by two electrodes, x1,2.

The form of the smearing function (i.e. specifying the functional form of x) has been
discussed at considerable length in the literature relating to this topic and the interested
reader is referred to [20]-[26] for more information. What concerns us in this paper is
that the theoretical and experimental form of this potential is that of a spatial low-pass
filter kernel (a summation of Legendre polynomials) and is strictly non-negative. A
positive going potential from the cortex will hence be observed at the scalp as a positive
going potential as well (albeit smeared), and a negative going potential will be observed
similarly as negative going on the scalp, as depicted schematically in Figure 1(b). When
we consider the issue of multiple scalp electrodes, then, we may form a simple model
for the observed potentials. Consider a single source, sj [t], say on the cortex. Each
observed EEG signal, xi[t], has a contribution from sj [t] which we define as Aijsj [t]
where the coupling coefficient, Aij , is related to the volume conduction effect and the
distance from source to electrode etc. The major point is that all these coefficients are
non-negative.

Given a set of multiple sources and additive noise processes, ni[t], we may write a
model for each observed EEG signal as

xi[t] =
∑

j

Aijsj [t] + ni[t] (5)

or, in vector-matrix notation as

x[t] = As[t] + n[t] (6)

This is, of course, the canonical form of the ICA source mixing process with one crucial
constraint, the elements of A are non-negative. In the following section we review and
detail our approach to inference in the ICA model and consider the impact of positivity
constraints on the mixing process.

It is important at this point to note that we do not consider the ‘true’ underlying
sources of EEG to be fully ‘independent’. The name of Independent Component Anal-
ysis is somewhat misleading in this sense. Whenever we mix any set of source signals,
independent or not, the resultant mixtures are less independent than the originals. The
role of ICA (in the framework which we consider) is then to unmix by making the
putative sources as independent as possible. This subtle, but often overlooked, differ-



Bayesian Independent Component Analysis with Prior Constraints 163

ence is important as there is no guarantee that the EEG components we seek are indeed
independent in the strict sense but we still can regard ICA as an appropriate model.

One further point to remember is that by constraining A to be positive, yet allowing
the sources, s[t], to be unconstrained, we are constraining a sign consistency on the
observed EEGs. In other words, for a common-reference set of electrodes, a positive
(e.g.) inflection in one channel (due to an inflection in an underlying source) will be
observed (albeit at differing amplitude) as a positive inflection in other channels which
have significant coupling to the same source.

4 Implementation - Bayesian ICA

In this section we give an overview of the Bayesian ICA methodology used in this paper.
In common with ICA in the literature, we choose a generative model to work with. This
is defined via the standard noisy ICA model of Equation (4).

The noise, n[t], is assumed to be Gaussian1, with zero mean and diagonal precision2

matrix R. The probability of observing data vector x[t] is then given by

p(x[t]|s[t],A,R) =
∣∣∣∣det

(
R
2π

)∣∣∣∣
1
2

exp[−ED] (7)

where

ED =
1
2
(x[t]−As[t])TR(x[t]−As[t]) (8)

Since the sources s[t] = {s1[t], .., si[t], .., sM [t]} are mutually independent in the
model, the distribution over s[t] for the t-th data point can be written as

p(s[t]) =
M∏
i=1

p(si[t]) (9)

where the product runs over the M sources.
In ICA, one attempts to uncover the hidden sources that give rise to a set of observa-

tions. In principle, this is achieved by calculating the posterior over the latent variables
(sources) given the observed variables and the model, M

p(s[t]|x[t],M) =
p(x[t]|s[t],M)p(s[t]|M)

p(x[t]|M)
(10)

where p(s[t]|M) is the source model and p(x[t]|M) is a normalising factor often called
the marginal likelihood, or evidence for model M.

1 This could be relaxed, but we run the risk of non-Gaussian noise being interpreted as an extra
source in the model.

2 Precision is inverse (co)variance.
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4.1 Source Model

The choice of a flexible and mathematically attractive (tractable) source model is cru-
cial if a wide variety of source distributions are to be modeled; in particular, the
source model should be capable of encompassing both super- and sub-Gaussian dis-
tributions (distributions with positive and negative kurtosis respectively) and complex
multi-modal distributions.

One such distribution is a mixture of Gaussians (MoG). Mixture of Gaussian source
models are attractive, as they offer excellent source density modelling capabilities. It
is worth reviewing briefly the issue of source densities. Many ICA models, such as the
‘InfoMax’ models described by Bell & Sejnowski [5] have a fixed non-linearity, corre-
sponding to a fixed source density model. Typically this take the form of a tanh non-
linearity (for detailed reasoning behind this choice, the reader is referred to [5]) which
gives rise to an equivalent reciprocal cosh source density as p(si) = 1/π cosh(si). It
remains testimony to the power of the ICA methodology that such fixed source models
work so well. The major problem lies in the fact that they are only able to separate
sources which are heavier in the tails than a Gaussian (i.e. platykurtic sources). To en-
able the separation of sources of arbitary densities, flexible models are required. One
such approach was developed in [9] in which the use of Generalised Exponential (Gen-
Exp) sources was formulated in which p(si) ∝ exp(−βi|si|ri) and βi, ri are inferred
parameters. Although the GenExp solution does give better performance compared to
standard fixed source models, it is still uni-modal and less well-suited to a variety of
real-world applications then a MoG model [27]. Figure 2(a) shows the histogram of
values from a complex multi-modal source (an image in this example). Plot (b) shows
the learned GenExp source density model and plot (c) the MoG model. We simply note
that, although computationally more intensive, the MoG model offers considerably bet-
ter density models and, in principle therefore, better ICA source estimates. In all the
examples in this paper we use the MoG source density model. The i-th source density
is hence given as

p(si) =
Ci∑

c=1

πi,cN (si|μi,c, βi,c)

where c indexes the components in the mixture model (in Figure 2(c) there are three),
πi,c are the mixing fractions and μi,c, βi,c are the mean and precision of the c-th Gaus-
sian distribution in the model for the i-th source.

5 Bayesian Inference and Variational Learning

The parameters of the model could be learnt through a maximum likelihood approach
such as the Expectation-Maximisation (EM) algorithm [28,29] (see also [30] for a com-
prehensive derivation of the EM algorithm with regard to ICA). The resultant values can
then be used to reconstruct the sources via the MoG source model. We take, arguably, a
more comprehensive approach in which a full Bayesian paradigm is employed. This is
detailed in this next section.

The maximum likelihood approach to learning the parameters of the model is well
documented (see [30], [31], [32] for an introduction), as are the pitfalls. We choose to
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Fig. 2. Source models: (a) source histogram, (b) GenExp source model and (c) MoG source
model. The latter offers a better representation of the source density.

take a fully Bayesian approach and infer the posterior distributions over all parameters
and associated hyper-parameters.3 First, we will briefly discuss the prior distributions
over the model parameters and then go on to offer a brief overview of variational learn-
ing.

5.1 Prior Distributions

In Bayesian inference plausible priors must be placed over the variables of interest to
reflect our degree of knowledge, or lack or it, regarding the parameters. We briefly detail
the priors over the source model, the noise model and the mixing matrix in this section.
More mathematical detail is available in [12,27].

Source model: Because of the source independence intrinsic to generic ICA models, it
follows that the distribution over our source densities factorises. The source distribution
is hence specified by the set of parameters θi

def= {πi, μi, βi} where the index i ranges
over all source models and the π, μ, β are, respectively, the mixings, means and pre-
cisions of the Mixture of Gaussian (MoG) model components. The prior over the i-th
source model parameters is thus taken as a product of priors over πi, μi, βi.

p(θi) = p(πi)p(μi)p(βi) (11)

The prior over the mixing proportions, πi, for the ith source is a symmetric Dirichlet.
The prior over each mixture component mean is itself a Gaussian and the priors over
the associated precisions, βi, are Gamma distributions.

Noise model: The prior over the observation noise precision, R, is a product of Gamma
distributions for each diagonal element, Rj .

3 Hyper-parameters define the distributions over parameters of the model. For example, if a pa-
rameter has a normal distribution, the associated hyper-parameters are the mean and precision
of that distribution.
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Mixing matrix: The prior over each element of the mixing matrix, A is a rectified
Gaussian4 with precision αi for each column. By using a rectified Gaussian we force
non-negative solutions on the mixing process [11]. The resultant prior over A is then

p(A) =
M∏
i=1

N∏
j=1

N r(Aji|αi). (12)

By monitoring the evolution of the precision hyperparameters α, the relevance of each
source may be determined (this is referred to as Automatic Relevance Determination
and is discussed in the next section of this paper). If αi is large, column i of A will
be close to zero, indicating source i is irrelevant. Finally, the prior over each αi is a
Gamma distribution p(αi) = G(αi|bαi , cαi). Hence,

p(α) =
M∏
i=1

G(αi|bαi , cαi) (13)

5.2 Model Complexity

One of the most important issues in ICA lies in the determination of the appropriate
model complexity, i.e. the number of hypothesised sources. Why is this so important?
Unlike Principle Component Analysis (PCA), ICA does not form an orthogonal basis
set of Independent Components. The profound impact of this is that the addition of an
extra source (a basis) is to change all other sources. This is in sharp contrast to the PCA
case in which the addition of components does not affect the others. This means that if
we have the ‘wrong’ number of ICs in our model the sources inferred will be erroneous.
This is a serious issue, which has had scant coverage in the ICA literature.

As a trivial illustration of this effect we consider a set of six observations, created by
mixing two true sources. Figure 3 shows the results for 4, 3 and 2 hypothesised sources
from a set of six observation time series. In this simple case, we can probably just see
‘by eye’ that there are two sources, but we also note that the ‘spurious’ extra sources
are ‘sensible’ and that the detailed nature of each reconstruction is dependent upon
the number of sources. This problem may be dealt with in a mathematically principled
manner by using ‘weight-decay’ priors on the rows of the mixing matrix.

Automatic Relevance Determination: (ARD) For the simplest discussion of this con-
cept, we consider a single parameter, A say, in a model with error E. In a Bayesian
learning scheme, this error is defined via two terms, the error associated with the data
fit (actually the negative logarithm if the generative model) and the prior over A (again,
the negative logarithm of the prior probability). Hence,

E ∝ Edata − log p(A).

If we take p(A) ∝ exp(−α
2 A2) i.e. a Gaussian with zero mean and precision α then

the error becomes
E ∝ Edata +

α

2
A2.

4 A rectified Gaussian is defined as N r(y|α) = 2N (y|0, α) for y ≥ 0 and zero for y < 0. The
hyperparameter α is the precision, or inverse variance.



Bayesian Independent Component Analysis with Prior Constraints 167

Fig. 3. Number of sources?: In this simple example two sources are mixed to a set of six ob-
servations (top sub-figures) and subsequently decomposed with ICA to 2,3 and 4 sources (lower
sub-figures). Without care, it is difficult to guess the correct number of ICs.

The importance of this form of prior becomes clear when we consider the gradient

dE

dA
=

d

dA
Edata + αA.

Consider the case in which changes to the parameter A did not lead to significant
changes in the model’s performance in modelling the data. In this situation the term
d

dAEdata is close to zero and changes with iteration, t, to the parameter take the form,

dA

dt
∝ −dE

dA
≈ −αA

which leads to an exponential decay of A to zero. This weight-decay prior is well-
known in statistics and machine learning [33,34]. The key effect is that, in the case
of parameters which do not significantly contribute to an explanation of the observed
data via the model, the distrubution over the parameter shrinks and resultant values are
close to zero. This has the very desirable effect in generalised linear models, such as
ICA, of effectively removing basis components if the scheme is applied to the mixing
coefficients. In the ICA case, the latter are the rows of the mixing matrix. It is worth
noting that the elements of the ‘unused’ components will not be exactly zero and hence
ARD offers a ‘soft removal’ of components. In all examples discussed in this paper,
we observe that the ‘relevant’ components of the mixing matrix have magnitudes some
fifteen orders of magnitude more than the ‘irrelevant’ ones making confirmation of
correct model selection, where possible, straighforward.

5.3 Variational Bayesian Learning

Bayesian inference in complex models is often computationally intensive and in-
tractable. An important and efficient tool in approximating posterior distributions is
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the variational method (see [35] for an excellent tutorial). In particular, we take the
variational Bayes approach detailed in [36].

The central quantity of interest in Bayesian learning is the posterior distribution
p(Θ|X) which fully describes our knowledge regarding all the parameters of the model,
Θ, when we have observed the data X. In non-linear or non-Gaussian models, however,
the posterior is often difficult to estimate as although one may be able to provide val-
ues for the posterior for a particular Θ, the partition function, or normalization term,
may involve an intractable integral. To circumvent this problem two approaches have
been developed: the sampling framework and the parametric framework. In the sam-
pling framework integration is performed via a stochastic sampling procedure such as
Markov-Chain Monte-Carlo (MCMC). The latter, however, can be computationally in-
tensive and assessment of convergence is often problematic. Alternatively, the posterior
can be assumed to be of a particular parametric form. In the Laplace approximation,
employed for example in the ‘Evidence framework’, the posterior is assumed to be
Gaussian [37]. This procedure is quick but is often inaccurate. Recently an alternative
parametric method has been proposed: Variational Bayes (VB) or ‘Ensemble Learning’.
In what follows we briefly describe the key features of VB learning.

Given a probabilistic model with parameters Θ of the observations data X the log
‘evidence’ or log ‘marginal likelihood’ may be given by:

log p(X) =
∫

q(Θ|X) log p(X)dΘ (14)

where q(Θ|X) is a hypothesized, or proposal, posterior density. This may be introduced
in the above equation as we note that q(Θ|X) is a density function (i.e. it integrates to
unity). Hence,

log p(X) =
∫

q(Θ|X) log p(X)dΘ

=
∫

q(Θ|X) log
(

p(X)
p(X, Θ)
p(X, Θ)

)
dΘ

=
∫

q(Θ|X) log
p(X, Θ)
p(Θ|X)

dΘ

=
∫

q(Θ|X) (log p(X, Θ)− log p(Θ|X) + log q(Θ|X)− log q(Θ|X)) dΘ

=
∫

q(Θ|X) log
p(X, Θ)
q(Θ|X)

dΘ +
∫

q(Θ|X) log
q(Θ|X)
p(Θ|X)

dΘ (15)

We may write the latter equation as

log p(X) = F (p, q) + KLpost(q, p) (16)

where

F (p, q) def=
∫

q(Θ|X) log
p(X, Θ)
q(Θ|X)

dΘ (17)

is known as the negative variational free energy and

KLpost(q, p) def=
∫

q(Θ|X) log
q(Θ|X)
p(Θ|X)

dΘ (18)

is the KL-divergence [38] between the proposal posterior and the true posterior.
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Equation 16 is the fundamental equation of the VB-framework. Importantly, be-
cause the KL-divergence is always positive [38], F (p, q) provides a strict lower bound
on the model evidence. Moreover, because the KL-divergence is zero when the two
densities are the same, F (p, q) will become equal to the model evidence when the ap-
proximating posterior is equal to the true posterior ie. if q(Θ|X) = p(Θ|X).

The aim of VB-learning is therefore to maximise F (p, q) and so make the approx-
imate posterior as close as possible to the true posterior. To obtain a practical learning
algorithm we must also ensure that the integrals in F (p, q) are tractable. One generic
procedure for attaining this goal is to assume that the approximating density factorizes
over groups of parameters (in physics this is known as the mean field approximation).
Thus, following [39], we consider:

q(Θ|X) =
∏

i

q(Θi|X) (19)

where Θi is the ith group of parameters (from the ith source, for example). The dis-
tributions which maximise the negative free energy can then be shown to be of the
following form (see [27]), here shown for parameter group Θi,

q(Θi|X) =
exp[I(Θi)]∫

exp[I(Θi)]dΘi
. (20)

where

I(Θi)
def=
∫

q(Θ\i|X) log p(X|Θ)p(Θ)dΘ\i (21)

and Θ\i denotes all the parameters not in the ith group. For models having suitable
priors, the above equations are available in closed analytic form. This leads to a set of
coupled update rules. Iterated application of these leads to the desired maximization.
Full details of this scheme applied to the ICA models considered in this paper may be
found in [10,12,18]. 5

All the derived posteriors require solving a set of coupled hyper-parameter update
equations. In practice, this is best achieved by cycling through groups of parameters
until convergence. The grouping we applied in this paper is detailed in [18] and is
briefly presented below:

– Mixture of Gaussians source model: means, variances and priors (mixing fractions)
are all updated along with the associated hyper-parameters.

– Mixing matrix: The elements of the mixing matrix,A are modelled as rectified nor-
mals. Updates are made to the components of A, the precisions, α and associated
hyper-parameters.

– Noise component: The noise process, n is modelled as a zero-mean Gaussian with
covariance R. Updates are made to R and associated hyper-parameters.

Once trained, the model can be used to reconstruct hidden source signals (to within
a scaling and permutation) given a data-set by calculating 〈si〉 under their respective
posteriors.

5 Code for all the implementations of ICA detailed in these references and in this paper may be
found via www.robots.ox.ac.uk/∼parg.



170 S. Roberts and R. Choudrey

6 Results

6.1 Initialisation

We set vague distributions for all prior distributions for all datasets presented here.
Three component mixture of Gaussians were used for all source models. Model learning
was terminated when the relative change in free energy dropped below 10−5. This took
between 10 and 50 iterations of the model for the examples shown in this paper. Fifty
iterations took just under 1 minute of CPU time running under Matlab on a 1.4GHz
processor. It is worth noting that, as a full Bayesian learning paradigm is taken, we avoid

Fig. 4. Synthetic data: Two sources of ’activity’ are mixed via a positive process to four observed
‘EEGs’
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Fig. 5. Synthetic data: (a) Unconstrained ICA solution showing resultant estimated mixing ma-
trix (top left), scatter plot of original sources against reconstructed (top right), and reconstructed
sources (lowermost). Plot (b) shows the same but for positive-constrained ICA. The flat lines in
the reconstructed sources are those components which have extremely low magnitude due to the
ARD process.

the need for user-specified parameters in the model. The choice of hyper-parameters
in the priors simply reflects our lack of knowledge about the problems ahead of time
(hence ‘vague’) and the algorithm is not critically dependent upon the precise values of
these.

6.2 Synthetic Data

As a first example, we use a set of data synthesised from a positive mixing. Figure 4
shows two synthetic ‘source activities’, a mixing process (to model the mixing from
cortex to a set of four scalp electrodes) and the resultant ‘EEGs’. Note, as discussed
previously, the constraint of positivity is imposed to ensure that there is sign consistency
assumed in the observed EEGs.

Figure 5 shows the results from (a) unconstrained ICA and (b) constrained ICA.
The negative free energies for the two models strongly favour the constrained model.
Note that in the latter case, not only are the sources better recovered (as evident in the
scatter-plot) but also the mixing matrix is better estimated than in the unconstrained
case. Note the near-zero elements in the estimated mixing matrices in both cases due
to the action of ARD. In both cases the resultant mixing matrix elements were of order
10−15. This gives rise to the ‘flat’ lines in the reconstructed source set. These can, of
course, be easily removed if required but are presented here for completeness. Note that
the reconstructed sources are all shown on the same scale.

One of the other key aspects of a probabilistic model for ICA lies in the inference of
a distribution over the sources rather than just point estimates. This means, for example,
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Fig. 6. Predictive distribution: Circles are the ‘ground truth’ source data, the thick line 〈s[t]〉
and the thin lines at ±σ

that error bars may be obtained on a point-by-point basis with ease. Figure ?? shows a
small section from the above synthetic data along with the predicted source distribution.
The circles are the ‘ground truth’ source data, the thick line the most-probable estimated
source and the thin lines at one standard deviation.

6.3 Brain-Computer Interface Data

We detail in this section results on a data set taken as part of a Brain-Computer Interface
(BCI) experiment [40,41]. A total of nine, 30-minute long, EEG channels were used in
this example, arranged 1cm apart in a 3 × 3 configuration over the left motor cortex.
The signals were sampled at 128Hz to 12-bit accuracy with an anti-aliasing filter with
a cut-off at 40Hz. A 7-second sample from the EEG recording is shown in Figure 7.
Note the consistency of deflection in the channels, i.e. positive going events are positive
going in all channels, albeit at different amplitudes.

Figure 8 shows the reconstructed source estimates (over the 30-second example
section of data) for the case of no constraint on A (a) and with a positivity constraint
(b). Note that, firstly, the recovered indepedent components are different and secondly
that the effect of ARD has been different in the two cases, with four sources inferred in
(a) whilst only three are inferred in (b). The negative free energies in the two cases are
−6.18× 104 for no constraints and −2.95× 104 for the positive constraint case. This
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0 7 t (seconds) 

Fig. 7. BCI data: Nine channels of EEG from a square grid of electrodes over the left motor
cortex. Note the consistency of events across all channels.

represents a clear hypothesis choice for the case of positive mixing especially when we
consider that the free energies are on a logarithmic scale.

For completeness we show the inferred values of the mixing matrices in the two
cases in Figure 9. As above, (a) shows the inferred elements of A for no constraints and
(b) for the case of positivity. The effect of ARD in the suppression of redundant sources
is clear from the rows of zero elements in A in both plots.

6.4 Epilepsy EEG

In this section we show results from the application of the ICA techniques discussed
to eight-channel data from an epilepsy sufferer. A total of four hours of data was used,
sampled as per the BCI data. Figure 10 shows a 30-second section of this data, chosen
so as to include a representative ‘spike and wave’ epileptic seizure event.

Figure 11 shows the inferred sources from (a) un-constrained mixing model and
(b) positivity-constrained mixing model. We once again note that the number of unsu-
pressed (non-zero) sources is very different with six sources inferred in case (a) and
only three in case (b). Once again positivity has found a considerably more compact
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0 7t (seconds) 

Fig. 8. BCI data, reconstructed source estimates: Plot (a) shows the reconstructed source esti-
mates for the case when no constraint is placed on the elements of the mixing matrix. Plot (b) is
for the case of positive constraints. Note, in particular, that the effect of ARD has been different
in the two cases, with fewer sources being inferred in the latter case.

representation of the data and this results in an improvement in negative free energy
(log data likelihood under the model) from −5.6× 104 to −3.2× 104.

As in the case of the BCI data, the elements of the inferred mixing matrix, A show
a considerable difference in the un-constrained (a) and constrained (b) cases as shown
in Figure 12.

6.5 Sampled EEG Data

In this section we apply the two ICA models considered in this paper, namely with and
without positivity mixing constraints, to a large database of EEG. A total of 36 hours of
eight-channel EEG data (sampled as per the other EEG data in this paper), was analysed.
A randomly selected five-second block of data was analysed using unconstrained and
constrained algorithms and the resultant negative free energies from the models stored.
This process was repeated 1000 times (with replacement). The negative free energies
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Fig. 9. BCI data, bar plots of mixing matrix elements: plot (a) shows the elements of A for
the case of no constraints and plot (b) with positivity. Note the clear effect of ARD in both plots,
to suppress redundant sources by inference of (near) zero elements in the mixing matrix.

0 30t (seconds) 

Fig. 10. Epilepsy data: A 30-second section of the eight channels of EEG in this data set
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(a) (b)

Fig. 11. Epilepsy data, reconstructed source estimates: Plot (a) is the un-constrained mixing
case and plot (b) the case with positivity constraints. Note the considerable change in the number
of significant sources
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Fig. 12. Epilepsy data, bar plots of mixing matrix elements: (a) un-constrained mixing model,
(b) positivity constrained mixing. Note that the number of non-zero rows has reduced from six in
plot (a) to only three in plot (b).

(data log likelihoods) from this experiment are presented as a boxplot6 in Figure 13.
We note that the free energies of the two models, evaluated over a large number of
randomly selected five-second sections of EEG, are highly significantly different and
clearly favour a positivity constraint on the mixing model.

7 Discussion and Conclusions

We have shown in this paper that constrained ICA models may be formed under the
framework of generative Bayesian modelling. The unknown parameters in the model

6 A boxplot shows the range of the data (upper and lower extensions from the box) along with
the median (line in box), upper and lower quartiles (the upper and lower edges of the box).
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Fig. 13. Boxplot of negative free energy: The profound effect of imposing a positivity prior is
shown in this Figure. The left-hand box plot shows negative free energy (model log-likelihood)
without positivity constraints and the right-hand e with the constraints.

are inferred using the methodology of variational Bayes learning. The model, hence,
allows for priors over all parameters. This has the benefit that, not only is ‘correct’
Bayesian inference performed but that the priors allow components of the model which
are not supported by the data (i.e. do not explain the data) to collapse thus giving a
principled manner in which to infer the number of underlying latent data ‘sources’.
The use of priors also allows for constraints to the model space, and in this paper we
explore the use of positivity priors on the mixing process from sources to observations.
We show that such positivity constraints are expected from simple considerations of the
EEG propagation process and show that in practice considerably sparser models (with
much higher likelihoods) are indeed found by imposing this constraint on the mixing
model in ICA.
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Abstract. Many feature selection algorithms are limited in that they
attempt to identify relevant feature subsets by examining the features
individually. This paper introduces a technique for determining feature
relevance using the average information gain achieved during the con-
struction of decision tree ensembles. The technique introduces a node
complexity measure and a statistical method for updating the feature
sampling distribution based upon confidence intervals to control the rate
of convergence. A feature selection threshold is also derived, using the
expected performance of an irrelevant feature. Experiments demonstrate
the potential of these methods and illustrate the need for both feature
weighting and selection.

1 Introduction

Ensemble algorithms have achieved success in machine learning by combining
multiple weak learners to form one strong learner. The Adaboost algorithm, [1]
and the Bagging algorithm [2] are two examples of this. Much research has been
conducted into understanding the mechanics of these methods and of finding
ways to improve them. The explanations centre around the idea of diversity in
the base learners, which enable good exploration of possible hypotheses. A good
generalisation ability of an ensemble can be obtained by constructing accurate
base learners that make their mistakes in different parts of the training data.
Many improvements to ensemble algorithms exploit this idea by attempting to
increase the diversity. The Random Forest technique, [3], is one such algorithm,
which adopts the randomisation principle of [4] to achieve an increase in diversity.
The base learners in this algorithm are CART based trees [5]. These trees usually
perform a search through a large number of possible binary splits for every
feature in order to find the optimal split for each node. The criterion for each
split is the measure of information gain, which is the reduction in entropy that
results from the split. The Random Forest algorithm uses Bagging to generate
a training set for each tree. Diversity is injected into the ensemble by choosing
a feature randomly at each node in the tree construction and optimising the
split over a set of possible split values along that feature. Due to the random
exploration of features, Random Forest lends itself to feature selection well.

Traditional approaches to feature selection have typically taken two forms,
the Filter method which attempts to select the optimal feature subset by
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analysing the structure of the data and the Wrapper method which performs
a search through possible feature subsets and uses the learning algorithm to
test the suitability of each. Both of these methods attempt to eliminate irrele-
vant features and reduce the probability of discovering false relationships in the
data. Also, by reducing the dimensionality of the data, the computational re-
quirement imposed upon the learning algorithm is reduced. The ability of each
feature subset is partially dependent upon the learning algorithm used. The
Wrapper method uses the learning algorithm to evaluate each feature subset
and consequently, has the advantage of incorporating this bias. However, when
using high dimensional data, the process of searching through possible feature
subsets can be computationally expensive.

The selection of features is not the only application that is available once
the relevance of each feature is known. Feature weighting algorithms are also
used, where all of the features are included in the learning process. In this case
each feature is relied upon to a different extent, which is determined by its
level of importance. Although this approach can improve generalisation, it does
not create a reduction in dimensionality. In random forest the feature weighting
concept can be realised by applying these levels of feature importance to the
feature sampling distribution from which the features are randomly chosen.

When feature selection is applied to ensemble learning, the criterion for se-
lection is somewhat different. The identification of relevant features is still an
important issue, but the selected features also need to promote diversity in the
constructed base learners. [6] proposed an algorithm which employed the random
subspace method, [7] to generate the learners which were evaluated in terms of
their accuracy and diversity.

The measure of feature importance adopted here is the average information
gain achieved during tree construction and a node complexity measure is in-
troduced to improve the accuracy of this measure. These levels of importance
are applied to the feature sampling distribution in a parallel scheme where the
rate at which the feature sampling distribution is updated is controlled using a
confidence interval method. This is also compared to a fast two stage method
where the feature sampling distribution is set before forest construction.

Feature weighting is shown to be successful here, but if the data contains a
significant number of irrelevant features, a selection scheme will improve per-
formance. An approximate threshold for feature selection is derived here, which
attempts to predict the expected average information gain achieved by an irrele-
vant feature. This is compared to a correlation based feature selection algorithm,
CFS [8] and it is shown that both feature weighting and selection should be ex-
ploited to optimise the generalisation.

Section Two introduces the concept of feature relevance and the measure
adopted in this paper. The node complexity measure is also introduced here.
Section Three examines the methods of updating the feature sampling distrib-
ution and introduces the parallel algorithm. The feature selection threshold is
described in section Four and the experimental results are shown in section Five.
Section Six discusses the results and gives some directions for further work.
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2 Identifying Feature Relevance

2.1 Defining Feature Relevance

In order to identify relevant features it is important to first consider a suitable
definition for feature relevance. The goal is to identify the features that carry as
much information concerning the target as possible and eliminate information
that is repeated in multiple features. As discussed by [9], an obvious definition
is that a feature Xi is relevant if there exist values xi and y assigned to Xi and
the target Y respectively, such that,

P (Y = y|Xi = xi) = P (Y = y) (1)

Intuitively this makes sense, as knowledge about the value of a relevant feature
should affect the prediction of the target. However, it is not always the case that
a relevant feature taken by itself provides valuable information about the target.
This is illustrated using the XOR example.

Example 1. If the target, Y is given by the exclusive OR of the binary features,
X1 and X2, then Y is fully described by the features and they are both relevant.

Y = X1 ⊕X2

However, if each feature assumes the values of 1 or 0 with equal probability, then
the above definition shows them both to be irrelevant. This is because knowing
the value of one of the features gives no information about the target without
knowing the value of the other feature.

It is claimed by [9] that two different types of relevance are required for successful
feature selection, strong relevance and weak relevance. Strong relevance is used
to describe a feature, which carries information about the target that is not
repeated in any other feature and is defined in the following manner, If Si is the
subset of all of the features apart from Xi and si is a value assignment to those
features, then Xi is strongly relevant if there exists some xi, y and si such that,

P (Y = y|Xi = xi, Si = si) = P (Y = y|Si = si) (2)

Removing a strongly relevant feature from the set will result in a loss of infor-
mation about the target. Weak relevance is used to describe features that carry
information about the target, but which is repeated in other features. Unlike
strongly relevant features, if a weakly relevant feature is removed, no informa-
tion about the target is lost. Xi is weakly relevant if it is not strongly relevant
and there exists some subset, S′

i of Si and values y, xi and s′i such that,

P (Y = y|Xi = xi, S
′
i = s′i) = P (Y = y|S′

i = s′i) (3)

Some feature selection schemes examine the correlation between features in an
attempt to discover this weak relevance such as [10], [11] and the CFS algorithm
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of [8]. This type of method highlights information that is shared between features
but does not discriminate between information that is useful for describing the
target and random correlations in the data.

The definition of weak relevance can also be viewed as a definition of con-
ditional independence, where the target Y is conditionally independent of the
feature Xi given a subset S′

i, if there exists no value assignments to these vari-
ables which satisfy the inequality. This idea can be extended to the concept of
identifying Markov Blankets [12]. If S′

i is some subset of the features, such that
Xi /∈ S′

i, and Si is the subset of remaining features, that excludes S′
i and Xi,

then S′
i is a Markov Blanket for Xi if there are no value assignments to the

variables such that,

P (Si = si, Y = y|Xi = xi, S
′
i = s′i) = P (Si = si, Y = y|S′

i = s′i) (4)

Therefore, S′
i is a Markov Blanket for Xi if it subsumes all of the predictive

information about the target and the remaining features that is contained within
Xi. One of the important properties of Markov Blankets is that features can be
removed recursively. Koller and Sahami [12], showed that if features are only
removed when a corresponding Markov Blanket is discovered, a feature that has
been eliminated will not become relevant again as more features are removed.

The estimation of Markov Blankets can be difficult and algorithms, such as
[12] and [11] use measures of correlation to find approximations of Markov Blan-
kets. The measure of correlation varies between the standard linear correlation,
which is limited to only identifying linear correlations in the data, and measures
from information theory such as information gain, conditional entropy and sym-
metrical uncertainty. Roobaert et al. [10], use information gain as a measure of
feature importance by calculating the reduction in entropy of the target caused
by separating the data with the given feature. The information gain on the target
Y , caused by the feature Xi is given by.

IG (Y |Xi) = H (Y )−H (Y |Xi) , (5)

where H (Y ) is the entropy of the class and H (Y |X) is the conditional entropy.
Care must be taken with this approach as information gain will favour features
with more partitions .

This method evaluates the importance of a feature solely by examining the
correlation to the target and consequently is equivalent to the definition of fea-
ture relevance given by Equation 1, which has already been shown to give incor-
rect results in certain situations.

The definitions of strongly and weakly relevant features are sufficient to de-
scribe the usefulness of the features concerned because they are based on the
analysis of feature subsets, rather than individual features or pairs of features.
There is always a possibility that redundancy and interaction can occur amongst
larger feature subsets. This is one of the reasons for the accuracy of Wrapper
methods but is also implemented by methods using random feature subset com-
bination such as the Parcel algorithm of [13]. This algorithm regards classifiers
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utilising diverse feature subsets as useful if they extend the convex hull over the
ROC space.

When employing decision trees such as CART or Random Forest, estimates
for the correlations between the features and the target are generated as part of
the construction process in the form of information gain values. [14] uses these
measures of feature importance to increase performance of the learning algo-
rithm. Although these measures appear to be simpler forms of information gain,
there are some benefits to using this method over standard information gain.
Each terminal node in a decision tree can be viewed as a learner that has been
trained on the features that were used in the path from the root. Consequently,
the information gain values are not simply measures of the individual feature
performance but measures of the ability of the feature in a variety of possible
feature subsets. It is clear from the XOR example that if the data was split using
one of the features and then split again using the other feature, that the second
split would reveal the relevance of the feature. Therefore, there is some allowance
for relationships between the features with this method. The advantage of this,
as a technique for feature selection, over the random subspace method [7], is
that multiple feature subsets can be evaluated within an individual learner, thus
yielding a more efficient subset exploration. Also, because the decision trees are
used for both the feature selection and learning processes, the bias of the learning
algorithm is incorporated.

The problem with using the average information gain achieved by each fea-
ture, is that some nodes in the tree are easier to split than others. The number
of ways a node can be split is determined by its composition and when smaller
nodes are split, the measure of information gain is clearly more unreliable. The
following introduces a measure to weight each value of information gain accord-
ing to its reliability.

2.2 A Node Complexity Measure

This measure attempts to assign a value of reliability to a node by examining
its composition and calculating the information associated with the splitting
of such a node. For every split, the data is projected along a single feature.
The assumptions made here are that once the data is projected into the one
dimensional space, no data points lie on top of one another and that during
the split optimisation procedure, all possible splits are found. Figure 1 shows
the possible split positions for one node once the data is projected into the one
dimensional space.

The problem is now a matter of considering how many possible arrangements
of the data are possible. For binary classification problems, n is the number of
examples contained in the node and i is the number of positive examples. The
number of possible arrangements is given by the combinatorial function,

Cn
i =

n!
i! (n− i)!

(6)
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X O X O X

Fig. 1. Illustration of possible splits in one dimensional space of a node consisting of 3
data points from one class and 2 from the other

However, some of these arrangements are merely reflections of each other and
will, therefore, result in the same optimised information gain. For example, a
node containing only two examples, one of each class, will have two possible
arrangements. The optimal split value is the same in both cases and this node can
yield only one information gain value. Using the assumptions stated above, this
example would be split perfectly by all features and would result in a maximum
information gain value. Therefore, this illustrates the need for effective weighting
of the nodes.

Not all of the arrangements have a reflected twin because some arrangements
are symmetrical about their centre. These symmetrical arrangements shall be
referred to as unique and their frequency designated by Au. Their counterparts
shall be referred to as non-unique and their frequency can be written Cn

i −Au. Au
can be calculated by considering the arrangements of half of the data and then
taking the reflection to form the other half. This technique is dependant upon
whether the values of n and i are odd or even and the corresponding functions
are given in Table 1.

Table 1. Number of unique arrangements for node

n i Au

EVEN EVEN C
n
2
i
2

ODD ODD C
n−1

2
i−1
2

ODD EVEN C
n−1

2
i
2

EVEN ODD 0

The probability of a random occurrence of a particular unique arrangement,
Ux is simply the probability of any particular arrangement,

P (Ux) =
1
Cn

i

(7)

As non-unique arrangements have two possible configurations, their correspond-
ing probability, Nx is,

P (Nx) =
2
Cn

i

(8)
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Assuming that the arrangements are random, the node complexity measure, NC,
which is the information associated with the split of node l is,

NC (l) = −Au

Cn
i

log2 P (Ux)−
Cn

i −Au

Cn
i

log2 P (Nx) , (9)

which can be simplified to,

NC (l) = log2 Cn
i −

(
1− Au

Cn
i

)
(10)

This is a suitable weight for calculating the average information gain because it
represents the node complexity and therefore, how useful it is in identifying the
predictive power of the feature.

3 The Feature Sampling Distribution

The measures of feature importance can be used to select the most relevant
features but another application is to include all of the features in the learning
process but weight their relevance to the problem according to their measure
of importance. Random Forest can be adapted quite easily to achieve this. The
standard Random Forest method chooses a feature at each split randomly from
the set of all possible features. This feature sampling distribution is typically
uniform but can be altered to incorporate the learned feature importance. By
applying this technique, features that are deemed to be more important are
chosen with a greater probability. CART trees consider all features at each stage
of construction and choose the feature that provides the highest information
gain. Altering the feature sampling distribution can be viewed as increasing the
similarity of the randomly created trees to the ideal CART tree. If a feature
selection algorithm is applied to Random Forest, then the class of possible trees
that can be built is restricted and the diversity is reduced. By altering the feature
sampling distribution, a trade off is introduced between increasing the strength
of the base learners and maintaining the diversity of the ensemble. The goal
is then to maximise the generalisation performance by optimising the feature
sampling distribution in terms of these factors.

The alteration of the feature sampling distribution can be achieved in two
ways. A two-stage method can be adopted, where an evaluation of the feature
importance is conducted first and then applied to the construction of a Random
Forest. Another approach is to combine the evaluation stage and the construction
stage in a parallel scheme. As each tree in the forest is constructed, it can
be used to evaluate the features and update the feature sampling distribution
accordingly. The two-stage approach has the advantage of developing a reliable
and accurate estimate of the ideal feature sampling distribution from which to
build the forest. The parallel approach would be faster but has the problem of
instability during the initial stages of the algorithm. When the forest is still
small, there is very little information about the features from which to update
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the sampling distribution. Initial overweighting of some features may create a
sampling distribution that is far from ideal and the algorithm may not be able
to recover from this as more trees are added. An implementation of the parallel
method by [14] uses the measure of information gain as the feature importance
metric. The weights of the features are updated according to,

w(Xi,m) = C · I(Xi, 0) +
m∑

j=1

w(Xi, j), (11)

where w(Xi,m) is the weight assigned to feature i after construction of the mth

tree. I(Xi, 0) is taken as the impurity of the whole data and C is a parameter
which is used to control the rate at which the feature sampling distribution
changes. By increasing the value of C the rate is decreased and the problem
of initial overweighting is overcome. However, if C is too high, the sampling
distribution will not change significantly and a forest very close to a standard
Random Forest will be produced. Therefore, there is a need for tuning of the C
parameter, which can typically be achieved using cross validation on the training
data but the advantage of the small computational requirement is lost.

3.1 A Stable Parallel Method Using Confidence Intervals

A method of avoiding the cross validation stage would certainly be beneficial
to the performance of the algorithm but a way of estimating the optimal con-
vergence rate of the sampling distribution is required. The method introduced
here, is to calculate a confidence interval for the estimate of expected informa-
tion gain for each feature. Effectively, by observing the information gain values
one is sampling from a distribution, which is assumed here to be normal. What
is then required is the ability to approximate the probable distance between the
mean of this normal distribution and the observed average information gain.
Although the mean and variance of the true distribution are unknown, this can
be accomplished by using the pivotal quantity method.

Given the sample mean (observed average information gain), IG, the sample
variance, S2, the sample size, m and the true mean of the distribution μ. The
pivotal quantity is,

IG− μ

S/
√
m

, (12)

and has a Student’s t distribution with m− 1 degrees of freedom. A confidence
interval can then be constructed within the distribution of the pivotal quantity.

P

[
q1 <

IG− μ

S/
√
m

< q2

]
= γ, (13)

which gives the bound,

IG− q2S√
m

< μ < IG− q1S√
m

(14)
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The process then consists of taking the observed information gains for each
feature, calculating the sample mean and sample variance and deciding what
level of confidence to use. A value of 0.95 for γ is typical. As the Student’s t
distribution is symmetrical, the optimal boundary values will be when q1 = −q2.
These can be calculated from the value of γ by using an inverse Student’s t
distribution and then used to give the confidence interval around the sample
mean.

If the sample mean is calculated using the weighted method then the sample
variance must be weighted accordingly. Also, the sample size m must be re-
examined, as a definition is required for a unit observation. A sensible value
should be close to the information associated with the split of a node, averaged
over all nodes in the tree. However, this is not known before the construction of
the forest and must remain constant throughout.

These confidence intervals can then be used to update the feature sampling
distribution by choosing values for each feature that lie within each confidence
interval that yield the most uniform distribution. Here, the average information
gain for each feature is viewed as assuming a value within a range of possible
values, which are determined by the corresponding confidence interval. These
average information gains can then be normalised and applied directly to set the
feature sampling distribution, but their values must first be chosen such that
they remain similar to each other and within their respective ranges. One simple
method for achieving this, is to find the midpoint between the maximum lower
bound and minimum upper bound of all of the confidence intervals. The value
for each feature is then chosen to be as close to this value as possible without
falling outside of the corresponding confidence interval.

This method will only update the feature sampling distribution when it has
a confidence equal to γ. As more trees are added to the forest, the confidence
in each estimate increases and the confidence intervals become smaller. Conse-
quently, the feature sampling distribution becomes less uniform and closer to
the ideal.

The confidence interval construction requires the calculation of an inverse
Student’s t distribution and the mean and variance of information gain for each
feature. The experiments in this paper update the confidence intervals after
the construction of every tree, in order to utilise the information concerning
the features as soon as it is available. However, the computational load can be
reduced, if desired, by updating the confidence intervals after a larger number
of trees have been constructed. The cost of this is that some of the trees will
be constructed using a feature sampling distribution that has not been created
from all of the information that is available.

4 A Feature Selection Threshold

It is conjectured that the average information gain during the construction of
decision trees is a measure of feature relevance. As previously discussed, it tests
the feature on different areas of the input space and consequently accounts for the
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different relationships between features. If these measures of feature importance
are applied to learning algorithms which are based on decision trees, it also
contains the bias of the learning algorithm. However, the worst performance
of any given feature for the splitting of any given node, is that no reduction
in entropy is possible and an information gain of zero is achieved. This means
that the average information gain for any feature is the mean of a non-negative
sample. The problem that arises from this, is that a feature which is completely
irrelevant will produce some reductions in entropy purely by chance. Therefore, a
non-zero feature importance value will be produced. This problem is particularly
detrimental to performance when there are a relatively large number of irrelevant
features and these values are used to update the feature sampling distribution.
This is because, the probability of sampling any of the irrelevant features is the
sum of all of their individual probabilities and although these may be small, the
total can easily become significant if there are many. To overcome this problem, a
feature selection threshold is introduced here, which approximates the expected
information gain that is achieved by an irrelevant feature, given the size of the
node being split.

Assuming that the task is binary classification and the data is projected onto
a single feature, a node of size n, containing i positive examples has Cn

i possible
arrangements. If the feature is irrelevant then these arrangements occur with
equal probability. By constructing all of the possible arrangements and finding
the maximum information gain, the expected value is calculated for various node
constitutions and the outcome is shown in Figure 2.
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Fig. 2. Expected information gain for nodes containing various numbers of positive
and negative examples

Due to the huge computational cost of evaluating the expected information
gain in this manner, it is not a feasible method for feature selection, however,
it can easily be approximated. For a fixed node size, the maximum expected
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information gain appears to be when there are equal numbers of positive and
negative examples and the minimum occurs when the ratio is most unbalanced.
Therefore, the minimum expected information gain for a node of fixed size n,
occurs when it contains only one example of one class, i = 1 or i = n− 1. This
can be calculated in the following manner.

The information gain is the difference between the parent entropy and the
combined child entropy and as the parent entropy for any given composition is
fixed, only the combined child entropy needs to be considered. The case used
here is that there is only one positive example, i = 1, and the optimal split
leaves this example in the left node of size nl. The right node then contains only
negative examples and will have an entropy of zero. The combined child entropy
CE is then,

CE = −nl

n

[
1
nl

log2
1
nl

+
nl − 1
nl

log2
nl − 1
nl

]
(15)

= − 1
n

[(nl − 1) log2 (nl − 1)− nl log2 nl] (16)

Differentiating by nl then gives,

∂

∂nl
[CE] =

1
n

[log2 nl − log2 (nl − 1)] (17)

For the case when nl is not equal to 1 and consequently, must be a positive value
of a least 2, the entropy is always increasing with nl. Therefore, the optimal split
is obtained when nl is minimal. For a parent node of size n, the single positive
example can assume only one of the possible n positions. If n is taken to be
even, then by symmetry only n

2 of the arrangements need to be considered. The
expected child entropy can then be written,

E [CE] = − 2
n

n
2∑

nl=1

nl

n

[
1
nl

log2
1
nl

+
nl − 1
nl

log2
nl − 1
nl

]
(18)

= − 2
n2 log2

⎡
⎣ n/2∏

nl=1

(nl − 1)nl−1

nnl
l

⎤
⎦ (19)

=
1
n

log2 n− 1
n

(20)

Re-introducing the parent entropy, the expected information gain for a node of
size n with only one example of one class, E (IGL) can be written,

E [IGL] =
1
n
− n− 1

n
log2

n− 1
n

(21)

The expected information gain for the case when there are equal numbers
of each class cannot be calculated as easily. By examining the data that was
generated for the construction of Figure 2 and plotting the expected information
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gain for the case when the classes are equal on a logarithmic scale, it is seen that
this quantity can be approximated by the following expression,

E [IGU] =
(n

2

)−0.82
(22)

These two quantities can be viewed as upper and lower bounds on the ex-
pected information gain that is achieved by splitting a node of size n and are
shown in Figure 3. The mid-point between these two bounds represents a rea-
sonable estimate of the expected information gain of an irrelevant feature and
can be applied as a feature selection threshold.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Size

E
xp

ec
te

d 
In

fo
rm

at
io

n 
G

ai
n

i=1 or i=n−1
Approximated Value for i=n/2
Parent Entropy for i=1 or i=n−1

Fig. 3. Bounds on the expected information gain for varying node size. The parent
entropy is also plotted for the case when i = 1 or i = n − 1 as this represents the
maximum achievable information gain for this case.

5 Experiments

5.1 Datasets

The propeties of the data sets used in these experiments are shown in Table 2.
The Wisconsin Breast Cancer (WBC), Pima Diabetes, Sonar, Ionosphere and
Votes are available from the UCI Repository [15].

Simple is an artificial dataset consisting of 9 features and 300 examples. The
output is generated according to the function,

Y = X2
1 + 2X2 (23)

The remaining seven features are redundant and consequently this data set
should benefit significantly from feature selection algorithms. It is important
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Table 2. Data Set Properties

Data Set No. Examples No. Features No. Relevant Features
WBC 683 9 ?
Pima 768 8 ?
Sonar 208 60 ?

Ionosphere 351 34 ?
Votes 435 16 ?

Friedman 200 10 5
Simple 300 9 2

to note that as the input values to the function generator are randomly chosen
between 0 and 1, feature 2 carries more predictive information than feature 1.

The Friedman dataset, [16] is another artificial dataset data set that is de-
signed for testing feature selection algorithms. It is generated according to the
following formula and has been thresholded in order to convert it into a binary
classification problem. A threshold value of 14 was chosen to yield a reasonably
balanced data set.

Y = 10 sin (πX1X2) + 20
(
X3 −

1
2

)2

+ 10X4 + 5X5 + N (0, 1.0) (24)

5.2 The Node Complexity Measure

The Simple dataset is used to generate 5000 trees and the information gain
values for all of the features are recorded. The values are discretised into inter-
vals of size 0.01 so that each feature has a set of bins. As each node is split,
the algorithm increments the bin corresponding to the feature being used and
the information gain value obtained. As a comparison, one method increments
the bins by a single unit, the other method increments by the measure of node
complexity, I(l). Incrementing by this value shows the effect of weighting the in-
formation gains in this manner. The results for three of the features are shown in
Figure 4. The middle example is feature two, which carries the most information
about the target. The left example is the next most important feature and the
example on the right is a redundant feature.

It is particularly interesting to note the spikes that occur when unit weighting
is used. At first glance, they appear to simply be noise but closer inspection
reveals that they occur in the same places for all three features. The extreme
right hand spike is the information gain that is achieved by the perfect split of
a node made up from half of each class. This can occur when a node containing
two examples, one from each class, is split. The spike immediately to the left of
the maximum one can occur when a node containing two examples of one class
and one of the other is split perfectly. These smaller nodes are much easier to
split and can be split perfectly by features which carry very little information
about the target. This is illustrated by the eradication of the spikes in the lower
plots, where the sampling of the information gains is weighted according to
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Fig. 4. Observed density functions of information gain for three features from the
Simple dataset. Observed density using unit weighting (top) and observed density
using node complexity weighting (bottom)

.

the node complexity. This result clearly demonstrates the ability of the node
complexity measure to improve the estimate of feature importance by analysing
the reliability of each sample.

5.3 Updating the Feature Sampling Distribution

The parallel method is employed to form confidence intervals on the estimates of
feature importance and the feature sampling distribution is updated after every
tree. The assumption that the information gain values are normally distributed
is an approximation as the values are bounded on [0,1]. However, the shape of
the distribution approximates normal if the node complexity weighting is used.

The initial feature sampling distribution is uniform and the algorithm keeps
the most uniform distribution that is within the confidence interval of every
feature. As the measures of information gain are weighted, a value for a unit of
weight is required. This value should represent the information of the average
split in a tree built on the dataset concerned. This value is approximated using
a fraction of the node complexity of the entire data.

100 trials are conducted, using 90% of the data for training and 10% for
testing. On each of the trials the rate of decrease of average confidence interval
size is recorded and the result averaged over all of the trials. This represents
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Fig. 5. Convergence rates for the feature sampling distribution. This shows how the
average confidence interval size becomes smaller as more trees are added to the forest.

the rate of convergence towards the final feature sampling distribution and the
results are shown in Figure 5.

The convergence rates vary with the size of the trees constructed and with
the dimensionality of the data. The Pima data set has few features and produces
large trees so the features are picked more often within each tree. In contrast,
the Sonar data set has 60 features and produces smaller trees. Therefore, the
convergence rates can still vary significantly, despite the incorporation of the
prior knowledge.

A two-stage method is also applied where a single CART tree is built on
the training data before construction of the forest to produce estimates of the
feature importance. The average information gain is calculated using the measure
of node complexity as before. However, by using a CART tree, each split supplies
an information gain value for every feature, regardless of whether or not it is
used. The forest is then constructed using the resultant fixed feature sampling
distribution.

These methods are also compared to the CFS algorithm of [8], which selects
a subset of features that have high correlation with the class and low correlation
with each other. The selected features are then used to construct a Random
Forest using a uniform feature sampling distribution.

Table 3 shows the error rates for standard Random Forest (RF), the CFS
algorithm (CFS), weighted sampling using confidence interval method (CI WS
RF) and the two-stage method using CART for evaluation (Two-stage CART).

Both methods of updating the feature sampling distribution improve the
accuracy for some data sets. This improvement is most noticeable for the artificial
data sets, which contain a number of irrelevant features. The confidence interval
method does not significantly reduce the accuracy for any data set tested here,
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Table 3. Test errors showing the improvement that three feature relevance identifi-
cation techniques give to Random Forest construction. The values in brackets are the
corresponding variances of test error over the 100 trials.

Data Set RF CFS CI WS RF Two-stage CART
WBC 0.0226(0.0003) 0.0235(0.0002) 0.0259(0.0003) 0.0226(0.0003)
Sonar 0.1657(0.0079) 0.2271(0.0066) 0.1462(0.0061) 0.1710(0.0069)
Votes 0.0650(0.0014) 0.0398(0.0007) 0.0493(0.0014) 0.0432(0.0008)
Pima 0.2343(0.0019) 0.2523(0.0024) 0.2394(0.0020) 0.2474(0.0018)

Ionosphere 0.0725(0.0017) 0.0650(0.0014) 0.0681(0.0018) 0.0661(0.0011)
Friedman 0.1865(0.0060) 0.1685(0.0055) 0.1690(0.0051) 0.1490(0.0052)
Simple 0.0937(0.0028) 0.1653(0.0044) 0.0450(0.0011) 0.0270(0.0009)

suggesting that the problem of initial over weighting of the features has been
avoided. The two-stage CART method is shown to work well here, although there
is no control over the reliability of this method and may encounter problems with
certain data sets. Both methods compare favourably to the CFS algorithm, as
CFS eliminates relevant features for some of the data sets, and consequently
degrades the accuracy significantly.

5.4 Feature Selection Thresholding

To view the suitability of the measures of expected information gain as feature
selection thresholds, 100 trees are constructed on the Simple dataset and the
average information gain for each feature was recorded. The measures of expected
information gain for irrelevant features are also calculated. Figure 6 shows that
the seven irrelevant features are within the bounds that an irrelevant feature is
expected to be in and the two relevant features are shown to be more important.

To approximate the expected information gain for a node of size n with any
given composition, the mid-point between the two measures is used. Again, the
data is split into 90% for training and 10% for testing. 100 trees are constructed
on the training data for feature evaluation. During this, the average information
gain is recorded and the approximate expected information gain is calculated.
A further 100 trees are then constructed for classification of the test data. This
process is repeated for 100 trials and the results averaged. This experiment is
performed three times, the first experiment simply applies the recorded average
information gain values to the feature sampling distribution (WS) and the second
uses the expected information gain to select the relevant features but leaves
the sampling distribution uniform (FS). The third experiment combines both
methods by selecting the relevant features and altering the sampling distribution
of the remaining features (WS & FS). Again, these results are compared to the
CFS algorithm. The error rates for these experiments are shown in Table 4.

The results for the artificial datasets show an improvement when using fea-
ture selection, which is not surprising as it is known that they contain a sig-
nificant number of irrelevant features. The Votes dataset shows the benefits of
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Fig. 6. The measures of feature importance for each feature in the Simple dataset and
the approximate bounds for the expected values of irrelevant features. Features 1 and
2 are relevant, the remaining features are irrelevant.

Table 4. Comparison of CFS to three methods of applying the observed feature im-
portances

Data Set CFS WS FS WS & FS
WBC 0.0235(0.0002) 0.0249(0.0003) 0.0245(0.0003) 0.0249(0.0003)
Sonar 0.2271(0.0066) 0.1757(0.0091) 0.1629(0.0060) 0.1643(0.0060)
Votes 0.0398(0.0007) 0.0464(0.0007) 0.0650(0.0013) 0.0439(0.0007)
Pima 0.2523(0.0024) 0.2312(0.0026) 0.2492(0.0021) 0.2486(0.0021)

Ionosphere 0.0650(0.0014) 0.0683(0.0017) 0.0747(0.0018) 0.0653(0.0016)
Friedman 0.1685(0.0055) 0.1555(0.0050) 0.1420(0.0060) 0.1370(0.0050)
Simple 0.1653(0.0044) 0.0393(0.0014) 0.0283(0.0009) 0.0303(0.0011)

feature weighting over the FS algorithm, as the error that is obtained from us-
ing feature selection only, is noticeably greater than when weighting is used. A
problem with our feature selection approach is clearly encountered with the Pima
dataset. This is most probably a consequence of the inaccuracy in the expected
information gain value and the possible variance in the recorded information
gain. The Pima dataset contains many features which are relevant, but whose
relevance is very small. As a result of this, the recorded information gains for
these relevant features are very close to the threshold and can easily fall below it.
CFS also removes relevant features with this data set and consequently performs
poorly. Using this threshold for average information gain as a feature selection
algorithm, performs significantly better than CFS for some data.



Ensemble Algorithms for Feature Selection 197

6 Discussion

Random Forest is an ensemble algorithm, which improves the generalisation
ability of weak learners by aggregation. The algorithm works well if the base
learners from which the ensemble is comprised have a good generalisation abil-
ity and are diverse. The performance can be improved using ensemble feature
selection, which chooses features that are not only predictive of the target and
uncorrelated to each other but also promote diversity between the constructed
hypotheses.

The average information gain achieved by each feature is shown to be a
very reliable measure of feature importance if treated correctly. It is more than
simply a measure of correlation as it tests the feature within different feature
subsets and to an extent, accounts for interactions between the features. It also
has a very small computational requirement, as the calculation is a product of
forest construction. A method of weighting this average using a measure of node
complexity is introduced and is shown to improve the accuracy considerably.
By examining the distribution of the information gain, it appears reasonably
normal.

Including all of the features and altering their sampling probabilities allows
exploration of the trade-off between improving the accuracy of the base learners
and maintaining the diversity within the ensemble. This can be performed by
either using a parallel method or a two stage method. Parallel methods can
suffer if the sampling distribution is updated too quickly. It is shown that by
constructing confidence intervals on the estimates of feature importance, the rate
of convergence can be controlled and the stability maintained. However, the rate
of convergence is still dependent upon the dimensionality of the data and the
resultant tree sizes.

A fast two stage method was introduced using a single CART tree to set the
feature sampling distribution prior to forest construction. This method achieved
surprisingly good results, although there are no bounds on the reliability of
such a method. A logical next step would be to combine this method with a
parallel one, where the CART tree could be used to initialise the feature sampling
distribution. It could also provide prior knowledge concerning the average tree
size, node complexity and number of features used. This would be useful for
constructing the confidence intervals and controlling the convergence rates.

The convergence rate could also be controlled by altering the level of con-
fidence used. Further work is required to find ways of identifying the optimal
convergence rate in terms of the size of the constructed forest.

A threshold for feature selection was introduced here that approximates the
performance of an irrelevant feature and performed well. It is clear that there
are benefits to both feature selection and feature weighting algorithms. Irrelevant
features degrade performance and need to be completely removed. The accuracy
can be improved further by weighting the relevant features in order to reflect
their relative importance. It has been shown here that both methods can be
exploited to improve generalisation. A way of improving the measure of feature
importance by identifying redundancies in the data should be investigated.
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Abstract. Learning curves for Gaussian process (GP) regression can
be strongly affected by a mismatch between the ‘student’ model and the
‘teacher’ (true data generation process), exhibiting e.g. multiple over-
fitting maxima and logarithmically slow learning. I investigate whether
GPs can be made robust against such effects by adapting student model
hyperparameters to maximize the evidence (data likelihood). An approx-
imation for the average evidence is derived and used to predict the op-
timal hyperparameter values and the resulting generalization error. For
large input space dimension, where the approximation becomes exact,
Bayes-optimal performance is obtained at the evidence maximum, but
the actual hyperparameters (e.g. the noise level) do not necessarily reflect
the properties of the teacher. Also, the theoretically achievable evidence
maximum cannot always be reached with the chosen set of hyperparam-
eters, and maximizing the evidence in such cases can actually make gen-
eralization performance worse rather than better. In lower-dimensional
learning scenarios, the theory predicts—in excellent qualitative and good
quantitative accord with simulations—that evidence maximization elim-
inates logarithmically slow learning and recovers the optimal scaling of
the decrease of generalization error with training set size.

1 Introduction

Gaussian processes (GPs) are by now a popular alternative to feedforward net-
works for regression, see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. They make prior as-
sumptions about the problem to be learned very transparent, and—even though
they are non-parametric models—inference is straightforward. Much work has
been done to understand the learning behaviour of GPs as encoded in the learn-
ing curve, i.e. the average generalization performance for a given number of
training examples [5, 7, 8, 9, 10, 12, 13]. This has mostly focused on the case
where the ‘student’ model exactly matches the true ‘teacher’ generating the data.
In practice, such a match is unlikely. In [11] I showed that much richer behaviour
then results, with learning curves that can exhibit multiple overfitting maxima,
or decay logarithmically slowly if the teacher is less smooth than the student as-
sumes. An intriguing open question was whether these adverse effects of model
mismatch can be avoided by adapting the student model during learning. This
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is the issue I address in the present paper, focusing on the adaptation of model
(hyper-)parameters by maximization of the data likelihood or evidence.

In its simplest form, the regression problem is this: We are trying to learn
a function θ∗ which maps inputs x (real-valued vectors) to (real-valued scalar)
outputs θ∗(x). A set of training data D consists of n input-output pairs (xl, yl);
the training outputs yl may differ from the ‘clean’ teacher outputs θ∗(xl) due to
corruption by noise. Given a test input x, we are then asked to come up with a
prediction θ̂(x), plus error bar, for the corresponding output θ(x). In a Bayesian
setting, one does this by specifying a prior P (θ) over hypothesis functions and
a likelihood P (D|θ) with which each θ could have generated the training data;
from these the posterior distribution P (θ|D) ∝ P (D|θ)P (θ) can be deduced.
For a GP, the prior is defined directly over input-output functions θ. Any θ is
uniquely determined by its output values θ(x) for all x from the input domain,
and for a GP, these are assumed to have a joint Gaussian distribution (hence
the name). The means are usually set to zero so that the distribution is fully
specified by the covariance function 〈θ(x)θ(x′)〉 = C(x, x′). The latter transpar-
ently encodes prior assumptions about the function to be learned. Smoothness,
for example, is controlled by the behaviour of C(x, x′) for x′ → x: The Ornstein-
Uhlenbeck (OU) covariance function C(x, x′) = a exp(−|x−x′|/l) produces very
rough (non-differentiable) functions, while functions sampled from the radial
basis function (RBF) prior with C(x, x′) = a exp[−|x− x′|2/(2l2)] are infinitely
often differentiable. Here l is a length scale parameter, corresponding directly
to the distance in input space over which significant variation in the function
values is expected, while a determines the prior variance.

A summary of inference with GPs is as follows (for details see e.g. [14, 15]).
The student assumes that outputs y are generated from the ‘clean’ values of a
hypothesis function θ(x) by adding Gaussian noise of x-independent variance σ2.
The joint distribution of a set of training outputs {yl} and the function values
θ(x) is then also Gaussian, with covariances given (under the student model) by

〈ylym〉 = C(xl, xm) + σ2δlm = (K)lm, 〈ylθ(x)〉 = C(xl, x) = (k(x))l (1)

Here I have defined an n×n matrix K and an x-dependent n-component vector
k(x). The posterior distribution P (θ|D) is obtained by conditioning on the {yl};
it is again Gaussian and has mean and variance

〈θ(x)〉θ|D ≡ θ̂(x) = k(x)TK−1y (2)

〈[θ(x) − θ̂(x)]2〉θ|D = C(x, x) − k(x)TK−1k(x) (3)

From the student’s point of view, this solves the inference problem: the best
prediction for θ(x) on the basis of the data D is θ̂(x), with a (squared) error bar
given by (3).

The squared deviation between the prediction and the teacher is [θ̂(x) −
θ∗(x)]2; the average generalization error (which, as a function of n, defines the
learning curve) is obtained by averaging this over the posterior distribution of
teachers, all datasets, and the test input x:

ε = 〈〈〈[θ̂(x)− θ∗(x)]2〉θ∗|D〉D〉x (4)
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Of course the student does not know the true posterior of the teacher; to estimate
ε, she must assume that it is identical to the student posterior, giving

ε̂ = 〈〈〈[θ̂(x)− θ(x)]2〉θ|D〉D〉x (5)

This generalization error estimate ε̂ coincides with the true error ε if the student
model matches the true teacher model and then gives the Bayes error, i.e. the
best achievable average generalization performance for the given teacher.

The evidence or data likelihood is P (D) =
∫
dθP (D|θ)P (θ), i.e. the average

of the likelihood P (D|θ) =
∏n

l=1(2πσ2)−1/2 exp[−(yl − θ(xl))2/(2σ2)] over the
prior. Since the prior over the θ(xl) is a zero mean Gaussian with covariance
matrix C(xl, xm), the integral can be done analytically and one finds

E ≡ 1
n

lnP (D) = −1
2

ln(2π)− 1
2n

yTK−1y − 1
2n

ln |K| (6)

The (normalized log-) evidence E depends, through K, on all student model
hyperparameters, i.e. σ2 and any parameters specifying the covariance function.
I will analyse the model selection algorithm which chooses these parameters,
for each data set D, by maximizing E. For one particular hyperparameter the
maximum can in fact be found analytically: if we write C(x, x′) = aC̃(x, x′) and
σ2 = aσ̃2, then the second term in (6) scales as 1/a and the third one gives the
a-dependent contribution (1/2) lna; maximizing over a gives a = n−1yTK̃−1y
and

max
a

E = −1
2

ln(2π/n)− 1
2
− 1

2
ln(yTK̃−1y)− 1

2n
ln |K̃|

Note that the value of a does not affect the student’s predictions (2), but only
scales the error bars (3).

2 Calculating the Evidence

A theoretical analysis of the average generalization performance obtained by
maximizing the evidence for each data set D is difficult because the optimal
hyperparameter values fluctuate with D. However, a good approximation—at
least for not too small n—can be obtained by neglecting these fluctuations,
and considering the hyperparameter values that maximize the average Ē of the
evidence over all data sets D of given size n produced by the teacher. To perform
the average, I assume in what follows that the teacher is also a GP, but with
a possibly different covariance function C∗(x, x′) and noise level σ2

∗. For fixed
training inputs, the average of ylym is then (K∗)lm = C∗(xl, xm) + σ2

∗δlm, and
inserting into (6) gives

Ē = −1
2

ln(2πσ2)− 1
2n
〈trK∗K−1〉 − 1

2n
〈ln |σ−2K|〉 (7)

where the remaining averages are over the distribution of all possible sets of
training inputs. To tackle these, it is convenient to decompose (using Mercer’s
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theorem) the covariance function into its eigenfunctions φi(x) and eigenvalues
Λi, defined w.r.t. the input distribution so that 〈C(x, x′)φi(x′)〉x′ = Λiφi(x) with
the corresponding normalization 〈φi(x)φj(x)〉x = δij . Then

C(x, x′) =
∞∑

i=1

Λiφi(x)φi(x′), and similarly C∗(x, x′) =
∞∑

i=1

Λ∗
i φi(x)φi(x′) (8)

For simplicity I assume here that the student and teacher covariance functions
have the same eigenfunctions (but different eigenvalues). This is not as restrictive
as it may seem; several examples are given below.

Introducing the diagonal eigenvalue matrix (Λ)ij = Λiδij and the ‘design
matrix’ (Φ)li = φi(xl), one now has K = σ2 + ΦΛΦT, and similarly for K∗.
In the second term of (7) we need trK∗K−1; the Woodbury formula gives the
required inverse as K−1 = σ−2[I− σ−2ΦGΦT], where G = (Λ−1 + σ−2ΦTΦ)−1.
A little algebra then yields

trK∗K−1 = −σ2
∗σ

−2tr (I−Λ−1G) + trΛ∗Λ−1(I−Λ−1G) + nσ2
∗σ

−2 (9)

and the training inputs appear only via the matrix G. A similar reduction is
possible for the third term of (7). The eigenvalues of the matrix σ−2K = I +
σ−2ΦΛΦT are easily seen to be the same as the nontrivial (= 1) ones of I +
σ−2ΛΦTΦ, so that ln |σ−2K| = ln |I+σ−2ΛΦTΦ|. If we generalize the definition
of G to G = (Λ−1 + vI + σ−2ΦTΦ)−1 and also define T (v) = ln |(Λ−1 + v)G|,
then T (∞) = 0 and so

ln |σ−2K| = ln |I + σ−2ΛΦTΦ| = T (0)− T (∞) =
∫ ∞

0
dv [tr (Λ−1 + v)−1 − trG]

(10)
Eqs. (9,10) show that all the averages required in (7) are of the form 〈trMG〉
with some matrix M. We derived an accurate approximation for such averages
in [5, 10, 11], with the result 〈trMG〉 = trMG where

G−1 = Λ−1 +
(

v +
n

σ2 + g(n, v)

)
I (11)

and the function g(n, v) is determined by the self-consistency equation g = trG.
Using this approximation and (9,10) in (7) gives, after a few rearrangements,

Ē = −1
2

ln(2πσ2)− 1
2

σ2
∗ + trΛ∗Λ−1G

σ2 + g
− 1

2n

∫ ∞

0
dv [g(0, v)− g(n, v)] (12)

where in the second term G and g are evaluated at v = 0. This approximation for
the average (normalized log-) evidence is the main result of this paper. The true
Ē is known to achieve its maximum value when the student and teacher model
are exactly matched, since the deviation from this maximum is essentially the
KL-divergence between the student and teacher distributions over data sets. Re-
markably, this property is preserved by the approximation (12): a rather lengthy
calculation shows that it has a stationary point w.r.t. variation of Λ and σ2

(which numerically always turns out to be maximum) at Λ = Λ∗ and σ2 = σ2
∗.
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3 Examples

If the eigenvalue spectra Λ and Λ∗ are known, the approximation (12) for the
average evidence can easily be evaluated numerically and maximized over the hy-
perparameters. As in the case of the unaveraged evidence (6), the maximization
over the overall amplitude factor a can be carried out analytically. The resulting
generalization performance can then be predicted using the results of [11].

As a first example scenario, consider inputs x which are binary vectors1

with d components xa ∈ {−1, 1}, and assume that the input distribution is
uniform. I consider covariance functions for student and teacher that depend on
the product x · x′ only; this includes the standard choices (e.g. OU and RBF)
which are functions of the Euclidean distance |x−x′|, since |x−x′|2 = 2d−2x·x′.
All these covariance functions have the same eigenfunctions [17], so our above
assumption is satisfied. The eigenfunctions are indexed by subsets ρ of {1, 2 . . .d}
and given explicitly by φρ(x) =

∏
a∈ρ xa. The corresponding eigenvalues depend

only on the size s = |ρ| of the subsets and are therefore ( d
s )-fold degenerate;

letting e = (1, 1 . . . 1) be the ‘all ones’ input vector, they can be written as
Λs = 〈C(x, e)φρ(x)〉x. From this the eigenvalues can easily be found numerically
for any d, but here I focus on the limit of large d where all results can be obtained
in closed form. If we write C(x, x′) = f(x · x′/d), the eigenvalues become, for
d → ∞, Λs = d−sf (s)(0) where f (s)(z) ≡ (d/dz)sf(z). The contribution to
C(x, x) = f(1) from the s-th eigenvalue block is then λs ≡ ( d

s )Λs → f (s)(0)/s!,
consistent with f(1) =

∑∞
s=0 f (s)(0)/s!. Because of their scaling with d, the Λs

become infinitely separated for d → ∞. For training sets of size n = O(dL),
one then sees in (11) that eigenvalues with s > L contribute as if n = 0, since
Λs � n/(σ2 + g); these correspond to components of the teacher that have
effectively not yet been learned [11]. On the other hand, eigenvalues with s < L
are completely suppressed and have been learnt perfectly. A hierarchical learning
process thus results, where different scalings of n with d—as defined by L—
correspond to different ‘learning stages’. Formally, one can analyse the stages
separately by letting d → ∞ at a constant ratio α = n/( d

L ) of the number
of examples to the number of parameters to be learned at stage L; note that
( d

L ) = O(dL) for large d. A replica calculation along the lines of Ref. [16] shows
that the approximation (12) for the average evidence actually becomes exact in
this limit. Fluctuations in E across different data sets also tend to zero so that
considering Ē rather than E introduces no error.

Intriguingly, the resulting exact expression for the evidence at stage L turns
out to depend only on two functions of the student hyperparameters. Setting
fL =

∑
s≥L λs (so that f0 = f(1)), they are fL+1 + σ2 and λL. The learning

curve analysis in [11] showed that these correspond, respectively, to the student’s

1 This assumption simplifies the determination of the eigenfunctions and eigenvalues.
For large d, one expects distributions with continuously varying x and the same
first- and second-order statistics to give similar results [16]. A case where this can
be shown explicitly is that of a uniform distribution over input vectors x of fixed
length, which gives spherical harmonics as eigenfunctions.



204 P. Sollich

0 1 2 3 4 5l
0

0.05

0.1

0.15

0.2

0.25

λ1

λ2

λ∗
2

λ∗
1

Fig. 1. Illustration of choice of optimal length scale in a scenario with large input space
dimension d, for an OU student learning an RBF teacher with length scale l∗ = 0.55.
Evidence maximization gives the optimality criterion λL = λ∗

L for learning stage L.
At stage L = 1, this has two solutions for the student length scale l, marked by the
arrows, while at stage L = 2 no solutions exist.

assumed values for the effective level of noise and for the signal to be learnt in the
current stage. Independently of the number of training examples α, the evidence
as calculated above can be shown to be maximal when these two parameters
match the true values for the teacher, and it follows from the results of [11] that
the resulting generalization error is then optimal, i.e. equal to the Bayes error.
This implies in particular that overfitting maxima cannot occur.

A first implication of the above analysis is that even though evidence maxi-
mization can ensure optimal generalization performance, the resulting hyperpa-
rameter values are not meaningful as estimates of the underlying ‘true’ values
of the teacher. Consider e.g. the case where the student assumes an OU co-
variance function, i.e. C(x, x′) = exp[−|x − x′|/(ld1/2)] and therefore f(z) =
exp[−

√
2− 2z/l], but the teacher has an RBF covariance function, for which

C∗(x, x′) = exp[−|x − x′|2/(2l2d)] and f∗(z) = exp[−(1 − z)/l2]. The length
scales have been scaled by d1/2 here to get sensible behaviour for d → ∞. Then
one has, for example,

λ0 = e−
√

2/l, λ1 = λ0/(
√

2l), λ∗
0 = e−1/l2∗ , λ∗

1 = λ∗
0/l2∗

For a given teacher length scale l∗, the optimal value of the student length scale l
determined from the criterion λL = λ∗

L will therefore generally differ from l∗, and
actually depend on the learning stage L. Similarly, the optimal student noise level
will not be identical to the true teacher noise level. At stage L = 1, for example,
the optimal choice of length scale implies λ1 = λ∗

1; but then f2 = 1 − λ0 − λ1
will differ from f∗

2 and the optimality condition f2 + σ2 = f∗
2 + σ2

∗ tells us that
σ2 = σ2

∗ .
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A second interesting feature is that, since the λL and fL depend in a com-
plicated way on the hyperparameters, the optimality conditions λL = λ∗

L and
fL+1 +σ2 = f∗

L+1 +σ2
∗ may have more than one solution, or none at all, depend-

ing on the situation. An example is shown in Fig. 1. For a noise free (σ2
∗ = 0)

RBF teacher with l∗ = 0.55, one has λ∗
1 = 0.121 and at learning stage L = 1

there are two very different optimal assignments for the student length scale,
l = 0.639 and l = 4.15 (marked by arrows in Fig. 1) which achieve λ1(l) = λ∗

1.
The corresponding optimal noise levels are also very different at σ2 = 0.0730 and
σ2 = 0.674, respectively. At stage L = 2, on the other hand, λ∗

2 = 0.2004 and
there is no value of the student length scale l for which λ2(l) = λ∗

2. One finds
that the evidence is in this case maximized by choosing l as large as possible.
With l large, all λi for i > 0 are very small, and the student’s assumed effective
noise-to-signal ratio (f3 + σ2)/λ2 becomes large. The results of [11] imply that
the generalization error will decay extremely slowly in this case, and in fact not
at all in the strict limit l → ∞. Here we therefore have a case where strongly sub-
optimal performance results from evidence maximization, for the reason that the
‘ideal’ evidence maximum cannot be reached by tuning the chosen hyperparame-
ters. In fact evidence maximization performs worse than learning with any fixed
set of hyperparameters! Including a tunable overall amplitude factor a for the
student’s covariance function and noise level would, for the example values used
above, solve this problem, and in fact produce a one-parameter family of optimal
assignments of a, l and σ2. One might expect this to be the generic situation but
even here there are counter-examples: the optimality conditions demand equality
of the student’s effective noise-to-signal ratio, κL = (fL+1 +σ2)/λL with that of
the teacher. But κL is independent of the amplitude factor a and ≥ fL+1/λL,
and the latter ratio may be bounded above zero, e.g. f3/λ2 ≥ 3 for any l for
an OU student. For sufficiently low κ∗

L there is then no choice of l for which
κL = κ∗

L.
In the second example scenario, I consider continuous-valued input vectors,

uniformly distributed over the unit interval [0, 1]; generalization to d dimensions
(x ∈ [0, 1]d) is straightforward. For covariance functions which are stationary, i.e.
dependent on x and x′ only through x−x′, and assuming periodic boundary con-
ditions (see [10] for details), one then again has covariance function-independent
eigenfunctions. They are indexed by integers2 q, with φq(x) = e2πiqx; the cor-
responding eigenvalues are Λq =

∫
dxC(0, x)e−2πiqx. For the (‘periodified’ ver-

sion of the) RBF covariance function C(x, x′) = a exp[−(x − x′)2/(2l2)], for
example, one has Λq ∝ exp(−q̃2/2), where q̃ = 2πlq. The OU case C(x, x′) =
a exp(−|x− x′|/l), on the other hand, gives Λq ∝ (1 + q̃2)−1, thus Λq ∝ q−2 for
large q. I also consider below covariance functions which interpolate in smooth-
ness between the OU and RBF limits. E.g. the MB2 (modified Bessel or Matern
class) covariance C(x, x′) = e−b(1 + b), with b = |x − x′|/l, yields functions
which are once differentiable [13, 15]; its eigenvalues Λq ∝ (1 + q̃2)−2 show a
faster asymptotic power law decay, Λq ∝ q−4, than those of the OU covari-

2 Since Λq = Λ−q , one can assume q ≥ 0 if all Λq for q > 0 are taken as doubly
degenerate.
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Fig. 2. Evidence maximization for a teacher with MB2 covariance function, l∗ = σ2
∗ =

0.1, and inputs x uniformly distributed over [0, 1]. Bold lines: simulation averages over
20 to 50 independent sequences of training examples, thin lines: theory. Left: Hyperpa-
rameters a, l, σ2 and generalization error ε vs. number of training examples n for OU
student; the more slowly decaying generalization error εfixed for a fixed student model
with l = σ2 = 0.1, a = 1 is also shown. For the MB2 (middle) and RBF (right) stu-
dents, σ2 is close to constant at σ2 = σ2

∗ in both theory and simulation and not shown.
Dashed lines indicate the Bayes-optimal scaling of the asymptotic generalization error,
ε ∼ n−3/4, which with evidence maximization is obtained even in the cases with model
mismatch (OU and RBF).

ance function. Writing the asymptotic behaviour of the eigenvalues generally as
Λq ∝ q−r, and similarly Λ∗

q ∝ q−r∗ , one has r = 2 for OU, r = 4 for MB2 and,
due to the faster-than-power law decay of its eigenvalues, effectively r = ∞ for
RBF. For the case of a fixed student model [11], the generalization error ε then
generically decays as a power law with n for large n. If the student assumes a
rougher function than the teacher provides (r < r∗), the asymptotic power law
exponent ε ∝ n−(r−1)/r is determined by the student alone. In the converse case,
the asymptotic decay is ε ∝ n−(r∗−1)/r and can be very slow, actually becoming
logarithmic for an RBF student (r → ∞). For r = r∗, the fastest decay for given
r∗ is obtained, as expected from the properties of the Bayes error.

The predictions for the effect of evidence maximization, based on (12), are
shown in Fig. 2 for the case of an MB2 teacher (r∗ = 4) being learned by a
student with OU (r = 2), MB2 (r = 4) and RBF (r = ∞) covariance functions.
Simulation results, obtained by averaging over 20 to 50 data sets for each n, are
also shown. The most striking feature is that the theory predicts that in all three
cases the generalization error now decays with the optimal power law scaling
ε ∼ n−(r∗−1)/r∗ = n−3/4; the simulations are consistent with this. In particular,
for the RBF student the logarithmically slow learning has been eliminated. For
the case of the MB2 student, the theory predicts that the optimal values of the
student hyperparameters are constant and identical to those of the teacher; this
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Fig. 3. Effects of evidence maximization for an OU student learning an RBF teacher,
for input space dimension d = 1. Shown is a sample from one of the runs for n =
50 summarized in Fig. 2. Inset: Training data (circles) and Bayes optimal prediction
function. Main graph: Difference between the prediction of the OU student and the
Bayes-optimal prediction, for hyperparameters set equal to those of the teacher (σ2 =
l = 0.1, a = 1, thin line). Evidence maximization gives a larger l and thus a smoother
student prediction that differs less from the Bayes-optimal prediction (bold line).

is as expected since then the models match exactly. The simulations again agree,
though for small n the effects of our approximation of averaging the evidence
over data sets and only then maximizing it become apparent.

For the OU student, inspection of the simulation results shows that the ev-
idence maximum can, for some data sets, result in either one of two extreme
hyperparameter assignments: σ2 = 0, in which case the rough OU covariance
function takes all noise on the teacher’s underlying smooth target function as
genuine signal, or l very large so that the covariance function is essentially con-
stant and the student interprets the data as a constant function plus noise.
Instances of the first type reduce the average of the optimal σ2-values, a trend
which the theory correctly predicts, but have a much stronger effect on the av-
erage optimal l through the rare occurrence of large values; our theory based on
neglecting fluctuations cannot account for this. For larger n, where theory and
simulation agree well, the optimal length scale l increases with n. This makes
intuitive sense, since it effectively reduces the excessive roughness in the func-
tions from the student’s OU prior to produce a better match to the smoother
teacher MB2 covariance function. An example of this effect is shown in Fig. 3.
For the RBF student, the opposite trend in the variation of the optimal length
scale l is seen: as n increases, l must be reduced to prevent the student from
over-smoothing features of the rougher teacher.
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4 Conclusion

In summary, the theory presented above shows that evidence maximization goes
a long way towards making GP regression robust against model mismatch. The
exact results for input spaces of large dimension d → ∞ show that evidence
maximization yields the (Bayes-)optimal generalization performance, as long as
the true evidence maximum is achievable with the chosen hyperparameters. The
optimal hyperparameter values are not, however, meaningful as estimates of
the corresponding teacher parameters. The analysis also shows that evidence
maximization has its risks, and does not always improve generalization perfor-
mance: in cases where the ideal evidence maximum cannot be reached by tuning
the available hyperparameters, evidence maximization can perform worse than
learning with any fixed set of hyperparameters.

In the low-dimensional scenarios analysed, the theory predicts correctly that
the optimal decay of the generalization error with training set size is obtained
even for mismatched models, mainly by appropriate adaptation of the covariance
function length scale. Our approximation of optimizing the evidence on average
rather than for each specific data set performs worse for small data set sizes
here, but predicts simulation results for larger n with surprising quantitative
accuracy.

As an issue for further work, it would be interesting to derive the asymptotic
decay of the generalization error analytically from (12). One puzzling issue is
the increase of the length scale seen for an OU student in Fig. 2. One might
argue naively that this increase cannot continue indefinitely because eventually
the student covariance function would degenerate into a constant; the length
scale should level off for sufficiently large n to prevent this. On the other hand,
small deviations from a truly constant covariance function will be amplified by
the presence of a large amount of data confirming that the target function is not
a constant, and this suggests that a true divergence of the optimal length scale
with n could occur.

A closer analysis of the effect of increasing d would also be worthwhile. For
example, the fact that for d → ∞ continuous ranges of optimal hyperparameter
assignments can occur suggests that large fluctuations in the optimal values
should be seen if scenarios with large but finite d are considered.

Finally, it will be interesting to understand how the above results for GP
regression relate to work on density estimation using GP priors. There it has
also been suggested that the decay of the estimation error with the number of
available data points can be made largely independent of model mismatch by
optimal hyperparameter tuning [18, 19, 20, 21, 22, 23, 24, 25].
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[6] Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, and Ole Winther.
Efficient approaches to gaussian process classification. In S.A. Solla, T.K. Leen,
and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12,
pages 251–257, Cambridge, MA, 2000. MIT Press.

[7] D Malzahn and M Opper. Learning curves for Gaussian processes regression: A
framework for good approximations. In T K Leen, T G Dietterich, and V Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 273–279,
Cambridge, MA, 2001. MIT Press.

[8] D Malzahn and M Opper. Learning curves for Gaussian processes models: fluctu-
ations and universality. Lect. Notes Comp. Sci., 2130:271–276, 2001.

[9] D Malzahn and M Opper. A variational approach to learning curves. In T G
Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 463–469, Cambridge, MA, 2002. MIT Press.

[10] P Sollich and A Halees. Learning curves for Gaussian process regression: approx-
imations and bounds. Neural Comput., 14(6):1393–1428, 2002.

[11] P Sollich. Gaussian process regression with mismatched models. In T G Dietterich,
S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing
Systems 14, pages 519–526, Cambridge, MA, 2002. MIT Press.

[12] C A Michelli and G Wahba. Design problems for optimal surface interpolation. In
Z Ziegler, editor, Approximation theory and applications, pages 329–348. Academic
Press, 1981.

[13] C K I Williams and F Vivarelli. Upper and lower bounds on the learning curve
for Gaussian processes. Mach. Learn., 40(1):77–102, 2000.

[14] C K I Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M I Jordan, editor, Learning and Inference in
Graphical Models, pages 599–621. Kluwer Academic, 1998.

[15] M Seeger. Gaussian processes for machine learning. International Journal of
Neural Systems, 14(2):69–106, 2004.

[16] M Opper and R Urbanczik. Universal learning curves of Support Vector Machines.
Phys. Rev. Lett., 86(19):4410–4413, 2001.



210 P. Sollich

[17] R Dietrich, M Opper, and H Sompolinsky. Statistical mechanics of Support Vector
Networks. Phys. Rev. Lett., 82(14):2975–2978, 1999.

[18] W Bialek, C G Callan, and S P Strong. Field theories for learning probability
distributions. Phys. Rev. Lett., 77(23):4693–4697, 1996.

[19] T E Holy. Analysis of data from continuous probability distributions. Phys. Rev.
Lett., 79(19):3545–3548, 1997.

[20] V Periwal. Reparametrization invariant statistical inference and gravity. Phys.
Rev. Lett., 78(25):4671–4674, 1997.

[21] V Periwal. Geometric statistical inference. Nucl. Phys. B, 554(3):719–730, 1999.
[22] T Aida. Field theoretical analysis of on-line learning of probability distributions.

Phys. Rev. Lett., 83(17):3554–3557, 1999.
[23] D M Schmidt. Continuous probability distributions from finite data. Phys. Rev.

E, 61(2):1052–1055, 2000.
[24] T Aida. Reparametrization-covariant theory for on-line learning of probability

distributions. Phys. Rev. E, 64:056128, 2001.
[25] I Nemenman and W Bialek. Occam factors and model independent Bayesian

learning of continuous distributions. Phys. Rev. E, 65:026137, 2002.



Understanding Gaussian Process Regression
Using the Equivalent Kernel

Peter Sollich1 and Christopher K.I. Williams2

1 Dept of Mathematics, King’s College London,
Strand, London WC2R 2LS, U.K.

peter.sollich@kcl.ac.uk
2 School of Informatics, University of Edinburgh,

5 Forrest Hill, Edinburgh EH1 2QL, U.K.
c.k.i.williams@ed.ac.uk

Abstract. The equivalent kernel [1] is a way of understanding how
Gaussian process regression works for large sample sizes based on a con-
tinuum limit. In this paper we show how to approximate the equiva-
lent kernel of the widely-used squared exponential (or Gaussian) kernel
and related kernels. This is easiest for uniform input densities, but we
also discuss the generalization to the non-uniform case. We show further
that the equivalent kernel can be used to understand the learning curves
for Gaussian processes, and investigate how kernel smoothing using the
equivalent kernel compares to full Gaussian process regression.

1 Introduction

Consider the supervised regression problem for a dataset D with entries (xi, yi)
for i = 1, . . . , n. Under Gaussian Process (GP) assumptions the predictive mean
at a test point x∗ is given by

f̄(x∗) = k
(x∗)(K + σ2I)−1y, (1)

where K denotes the n × n matrix of covariances between the training points
with entries k(xi,xj), k(x∗) is the vector of covariances k(xi,x∗), σ2 is the noise
variance on the observations and y is a n×1 vector holding the training targets.
See e.g. [2] for further details.

We can define a vector of functions h(x∗) = (K + σ2I)−1k(x∗) . Thus we
have f̄(x∗) = h
(x∗)y, making it clear that the mean prediction at a point x∗ is
a linear combination of the target values y. Gaussian process regression is thus
a linear smoother, see [3, section 2.8] for further details. For a fixed test point
x∗, h(x∗) gives the vector of weights applied to targets y. Silverman [1] called
h
(x∗) the weight function.

Understanding the form of the weight function is made complicated by the
matrix inversion of K+σ2I and the fact that K depends on the specific locations
of the n datapoints. Idealizing the situation one can consider the observations
to be “smeared out” in x-space at some constant density of observations. In this

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 211–228, 2005.
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case analytic tools can be brought to bear on the problem, as shown below. By
analogy to kernel smoothing Silverman [1] called the idealized weight function
the equivalent kernel (EK).

The structure of the remainder of the paper is as follows: In section 2 we
describe how to derive the equivalent kernel in Fourier space. Section 3 derives
approximations for the EK for the squared exponential and other kernels. In
section 4 we show how use the EK approach to estimate learning curves for
GP regression, and compare GP regression to kernel regression using the EK. A
summary of our key results can be found in the short proceedings paper [4].

2 Gaussian Process Regression and the Equivalent
Kernel

It is well known (see e.g. [5]) that the posterior mean for GP regression can be
obtained as the function which minimizes the functional

J [f ] =
1
2
‖f‖2

H +
1

2σ2

n∑
i=1

(yi − f(xi))2, (2)

where ‖f‖H is the RKHS norm corresponding to kernel k. (However, note that
the GP framework gives much more than just this mean prediction, for example
the predictive variance and the marginal likelihood p(y) of the data under the
model.)

Let η(x) = E[y|x] be the target function for our regression problem and write
E[(y − f(x))2] = E[(y − η(x))2] + (η(x) − f(x))2. Using the fact that the first
term on the RHS is independent of f motivates considering a smoothed version
of equation (2),

Jρ[f ] =
ρ

2σ2

∫
(η(x) − f(x))2dx +

1
2
‖f‖2

H,

where ρ has dimensions of the number of observations per unit of x-space
(length/area/volume etc. as appropriate). If we consider kernels that are station-
ary, k(x,x′) = k(x−x′), the natural basis in which to analyse equation (2) is the
Fourier basis of complex sinusoids so that f(x) is represented as

∫
f̃(s)e2πis·xds

and similarly for η(x). Thus we obtain

Jρ[f ] =
1
2

∫ (
ρ

σ2 |f̃(s)− η̃(s)|2 +
|f̃(s)|2
S(s)

)
ds, (3)

as ‖f‖2
H =

∫
|f̃(s)|2/S(s)ds where S(s) is the power spectrum of the kernel k,

S(s) =
∫
k(x)e−2πis·xdx. Jρ[f ] can be minimized using calculus of variations to

obtain f̃(s) = S(s)η(s)/(σ2/ρ + S(s)) which is recognized as the convolution

f(x∗) =
∫

h(x∗ − x)η(x)dx (4)
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Here the Fourier transform of the equivalent kernel h(x) is

h̃(s) =
S(s)

S(s) + σ2/ρ
=

1
1 + σ2/(ρS(s))

. (5)

The term σ2/ρ in the first expression for h̃(s) corresponds to the power spectrum
of a white noise process, whose delta-function covariance function becomes a
constant in the Fourier domain. This analysis is known as Wiener filtering; see,
e.g. [6, §14-1]. Notice that as ρ →∞, h(x) tends to the delta function.

To see the relation between the EK and the weights h(x∗) for prediction from
a finite data set, one notes that the integral in equation (4) can be approximated
by the discrete sum (1/ρ)

∑
i h(x∗−xi)yi; the factor 1/ρ represents the average

volume element associated with each of the discrete training inputs. The EK
h(x∗ − xi) should therefore approximate the scaled weights ρh(x∗). We will see
this confirmed below.

3 The EK for the Squared Exponential and Related
Kernels

For certain kernels/covariance functions the EK h(x) can be computed exactly
by Fourier inversion. Examples include the Ornstein-Uhlenbeck process in D = 1
with covariance k(x) = e−α|x| (see [6, p. 326]), splines in D = 1 corresponding
to the regularizer ‖Pf‖2 =

∫
(f (m))2dx [1, 7], and the regularizer ‖Pf‖2 =∫

(∇2f)2dx in two dimensions, where the EK is given in terms of the Kelvin
function kei [8].

We now consider the commonly used squared exponential (SE) kernel k(r) =
exp(−r2/2�2), where r2 = ||x− x′||2. (This is sometimes called the Gaussian or
radial basis function kernel.) Its Fourier transform is given by

S(s) = (2π�2)D/2 exp(−2π2�2|s|2)
where D denotes the dimensionality of x (and s) space.

From equation (5) we obtain

h̃SE(s) =
1

1 + b exp(2π2�2|s|2) ,

where b = σ2/ρ(2π�2)D/2. We are unaware of an exact result in this case, but the
following initial approximation is simple but effective. For large ρ, b will be small.
Thus for small s = |s| we have that h̃SE � 1, but for large s it is approximately
0. The change takes place around the point sc where b exp(2π2�2s2

c) = 1, i.e.
s2

c = log(1/b)/2π2�2. As exp(2π2�2s2) grows quickly with s, the transition of h̃SE
between 1 and 0 can be expected to be rapid, and thus be well-approximated by
a step function.

Proposition 1. The approximate form of the equivalent kernel for the squared-
exponential kernel in D-dimensions is given by

hSE(r) =
(sc

r

)D/2
JD/2(2πscr).
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Fig. 1. Plot of the asymptotic form of the EK (sc/r)J1(2πscr) for D = 2 and ρ = 1225

hSE(r) = 2πr
∫ ∞

0

(s
r

)ν+1
Jν(2πrs)h̃SE(s) ds (6)

� 2πr
∫ sc

0

(s
r

)ν+1
Jν(2πrs) ds =

(sc

r

)D/2
JD/2(2πscr).

where ν = D/2− 1, Jν(z) is a Bessel function of the first kind and we have used
the identity zν+1Jν(z) = (d/dz)[zν+1Jν+1(z)]. �

Note that in D = 1 by computing the Fourier transform of the boxcar func-
tion we obtain hSE(x) = 2scsinc(2πscx) where sinc(z) = sin(z)/z. This is con-
sistent with Proposition 1 and J1/2(z) = (2/πz)1/2 sin(z). The asymptotic form
of the EK in D = 2 is shown in Figure 1.

Notice that sc scales as (log(ρ))1/2 so that the width of the EK (which is
proportional to 1/sc) will decay very slowly as ρ increases. In contrast for a
spline of order m (with power spectrum ∝ |s|−2m) the width of the EK scales as
ρ−1/2m [1].

If instead of RD we consider the input set to be the unit circle, a stationary
kernel can be periodized by the construction kp(x, x′) =

∑
n∈Z

k(x− x′ + 2nπ).
This kernel will be represented as a Fourier series (rather than with a Fourier
transform) because of the periodicity. In this case the step function in Fourier
space approximation would give rise to a Dirichlet kernel as the EK (see [9,
section 4.4.3] for further details on the Dirichlet kernel).

We now show that the result of Proposition 1 is asymptotically exact for
ρ → ∞, and calculate the leading corrections for finite ρ. The scaling of the
width of the EK as 1/sc suggests writing hSE(r) = (2πsc)Dg(2πscr). Then from
equation (6) and using the definition of sc

Proof: SE(s) is a function of s = |s| only, and for D > 1 the Fourier integral
can be simplified by changing to spherical polar coordinates and integrating out
the angular variables to give

h̃
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g(z) =
z

sc(2πsc)D

∫ ∞

0

(
2πscs

z

)ν+1
Jν(zs/sc)

1 + exp[2π2�2(s2 − s2
c)]

ds

= z

∫ ∞

0

( u

2πz

)ν+1 Jν(zu)
1 + exp[2π2�2s2

c(u2 − 1)]
du (7)

where we have rescaled s = scu in the second step. The value of sc, and hence ρ,
now enters only in the exponential via a = 2π2�2s2

c . For a →∞, the exponential
tends to zero for u < 1 and to infinity for u > 1. The factor 1/[1 + exp(. . .)]
is therefore a step function Θ(1 − u) in the limit and Proposition 1 becomes
exact, with g∞(z) ≡ lima→∞ g(z) = (2πz)−D/2JD/2(z). To calculate corrections
to this, one uses that for large but finite a the difference Δ(u) = {1+exp[a(u2−
1)]}−1 − Θ(1 − u) is non-negligible only in a range of order 1/a around u = 1.
The other factors in the integrand of equation (7) can thus be Taylor-expanded
around that point to give

g(z) = g∞(z)+z

∞∑
k=0

Ik

k!
dk

duk

[( u

2πz

)ν+1
Jν(zu)

]∣∣∣∣
u=1

, Ik =
∫ ∞

0
Δ(u)(u−1)k du

The problem is thus reduced to calculating the integrals Ik. Setting u = 1 + v/a
one has

ak+1Ik =
∫ 0

−a

[
1

1 + exp(v2/a + 2v)
− 1

]
vk dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

=
∫ a

0

(−1)k+1vk

1 + exp(−v2/a + 2v)
dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

In the first integral, extending the upper limit to ∞ gives an error that is
exponentially small in a. Expanding the remaining 1/a-dependence of the in-
tegrand one then gets, to leading order in 1/a, I0 = c0/a

2, I1 = c1/a
2

while all Ik with k ≥ 2 are smaller by at least 1/a2. The numerical con-
stants are −c0 = c1 = π2/24. This gives, using that (d/dz)[zν+1Jν(z)] =
zνJν(z) + zν+1Jν−1(z) = (2ν + 1)zνJν(z)− zν+1Jν+1(z):

Proposition 2. The equivalent kernel for the squared-exponential kernel is
given for large ρ by hSE(r) = (2πsc)Dg(2πscr) with

g(z) =
1

(2πz)
D
2

{
JD/2(z) +

z

a2

[
(c0 + c1(D − 1))JD/2−1(z)− c1zJD/2(z)

]}
within an expansion in 1/a; the neglected terms are O(1/a4).

For e.g. D = 1 this becomes g(z) = π−1{sin(z)/z−π2/(24a2)[cos(z)+z sin(z)]}.
Here and in general, by comparing the second part of the 1/a2 correction with the
leading order term, one estimates that the correction is of relative size z2/a2. It
will therefore provide a useful improvement as long as z = 2πscr < a; for larger
z the expansion in powers of 1/a becomes a poor approximation because the
correction terms (of all orders in 1/a) are comparable to the leading order.
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3.1 Accuracy of the Approximation

To evaluate the accuracy of the approximation we can compute the EK numer-
ically as follows: Consider a dense grid of points in RD with a sampling density
ρgrid. For making predictions at the grid points we obtain the smoother matrix
K(K+σ2

gridI)
−1, where3 σ2

grid = σ2ρgrid/ρ, as per equation (1). Each row of this
matrix is (up to a factor ρgrid) an approximation to the EK at the appropriate
location, as this is the response to a y vector which is zero at all points except
one. Note that in theory one should use a grid over the whole of RD but in prac-
tice one can obtain an excellent approximation to the EK by only considering a
grid around the point of interest as the EK typically decays with distance. Also,
by only considering a finite grid one can understand how the EK is affected by
edge effects.

Figure 2 shows plots of the weight function for ρ = 100, the EK computed
on the grid as described above and the analytical sinc approximation. These are
computed for parameter values of �2 = 0.004 and σ2 = 0.1, with ρgrid/ρ = 5/3.
To reduce edge effects, the interval [−3/2, 3/2] was used for computations, al-
though only the centre of this is shown in the figure. There is quite good agree-
ment between the numerical computation and the analytical approximation,
although the sidelobes decay more rapidly for the numerically computed EK.
This is not surprising because the absence of a truly hard cutoff in Fourier space
means one should expect less “ringing” than the analytical approximation pre-
dicts. The figure also shows good agreement between the weight function (based
on the finite sample) and the numerically computed EK. The insets show the
approximation of Proposition 2 to g(z) for ρ = 100 (a = 5.67, left) and ρ = 104

(a = 9.67, right). As expected, the addition of the 1/a2-correction gives better
agreement with the numerical result for z < a. Numerical experiments also show
that the mean squared error between the numerically computed EK and the
sinc approximation decreases like 1/ log(ρ). The is larger than the näıve esti-
mate (1/a2)2 ∼ 1/(log(ρ))4 based on the first correction term from Proposition
2, because the dominant part of the error comes from the region z > a where
the 1/a expansion breaks down.

3.2 Other Kernels

Our analysis is not in fact restricted to the SE kernel. First of all, it trivially
extends to automatic-relevance determination kernels, which are obtained from
the SE kernel by allowing separate lengthscales for each input dimension, i.e.

3 To understand this scaling of σ2
grid consider the case where ρgrid > ρ which means

that the effective variance at each of the ρgrid points per unit x-space is larger,
but as there are correspondingly more points this effect cancels out. This can be
understood by imagining the situation where there are ρgrid/ρ independent Gaussian
observations with variance σ2

grid at a single x-point; this would be equivalent to one
Gaussian observation with variance σ2. In effect the ρ observations per unit x-space
have been smoothed out uniformly.
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Fig. 2. Main figure: plot of the weight function ρh(x∗) corresponding to ρ = 100
training points per unit length, plus the numerically computed equivalent kernel at
x∗ = 0 and the sinc approximation from Proposition 1. Insets: numerically evaluated
g(z) together with sinc and Proposition 2 approximations for ρ = 100 (left) and ρ = 104

(right).

k(x) = exp
(
− x2

1

2�21
− · · · − x2

D

2�2D

)
One can write this as k(x) = exp(−||L−1x||2/2) with L a diagonal matrix con-
taining the lengthscales �1, . . . �D. This could be further extended to arbitrary
linear transformations on input space, where L also has nonzero off-diagonal ele-
ments. Making the replacement x̃ = L−1x in the Fourier transform defining the
power spectrum S(s), and following through how this affects the EK as defined
in equation (5), one easily finds that

h(x) = |L|−1 h1
(
L−1x, ρ|L|

)
(8)

where h1(x, ρ) is the EK for the isotropic case with � = 1 and data point density
ρ. Equation (8) tells us that the EK is stretched or squashed by exactly the
same transformation matrix L as the underlying covariance kernel. The scaling
of the density ρ by the determinant |L| is also reasonable: what is relevant is the
number of data points per “correlation volume”. The latter can be defined e.g.
as the size of the region in x-space where k(x) is above some threshold value,
and is proportional to |L|. In the isotropic case one has |L| = �D, and the general
result in equation (8) is consistent with the fact that, in our earlier results, ρ
always appeared in the combination ρ�D.
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The identity (8) holds for linear transformations applied to any isotropic
kernel. In the following we therefore only consider the latter; the power spec-
trum S(s) then depends on s = |s| only. We can again define from equa-
tion (5) an effective cutoff sc on the range of s in the EK via σ2/ρ =
S(sc), so that h̃(s) = [1 + S(sc)/S(s)]−1. The EK will then have the
limiting form given in Proposition 1 if h̃(s) approaches a step function
Θ(sc − s), i.e. if it becomes infinitely “steep” around the point s = sc

for sc → ∞. A quantitative criterion for this is that the slope |h̃′(sc)|
should become much larger than 1/sc, the inverse of the range of the step
function. Since h̃′(s) = S′(s)S(sc)S−2(s)[1 + S(sc)/S(s)]−2, this is equiva-
lent to requiring that −scS

′(sc)/4S(sc) ∝ −d logS(sc)/d log sc must diverge
for sc → ∞. The result of Proposition 1 therefore applies to any kernel
whose power spectrum S(s) decays more rapidly than any positive power
of 1/s.

A trivial example of a kernel obeying this condition would be a superposi-
tion of finitely many SE kernels with different lengthscales �2; the asymptotic
behaviour of sc is then governed by the smallest �. A less obvious case is the
“rational quadratic” k(r) = [1 + (r/l)2]−(D+1)/2 which has an exponentially de-
caying power spectrum S(s) ∝ exp(−2π�s). (This relationship is often used in
the reverse direction, to obtain the power spectrum of the Ornstein-Uhlenbeck
(OU) kernel exp(−r/�).) Proposition 1 then applies, with the width of the EK
now scaling as 1/sc ∝ 1/ log(ρ).

The previous example is a special case of kernels which can be written as
superpositions of SE kernels with a distribution p(�) of lengthscales �, k(r) =∫

exp(−r2/2�2)p(�) d�. This is in fact the most general representation for an
isotropic kernel which defines a valid covariance function in any dimension D,
see [10, §2.10]. Such a kernel has power spectrum

S(s) = (2π)D/2
∫ ∞

0
�D exp(−2π2�2s2)p(�) d� (9)

and one easily verifies that the rational quadratic kernel, which has S(s) ∝
exp(−2π�0s), is obtained for p(�) ∝ �−D−2 exp(−�20/2�

2). More generally, be-
cause the exponential factor in equation (9) acts like a cutoff for � > 1/s, one
estimates S(s) ∼

∫ 1/s

0 �Dp(�) d� for large s. This will decay more strongly than
any power of 1/s for s → ∞ if p(�) itself decreases more strongly than any
power of � for � → 0. Any such choice of p(�) will therefore yield a kernel to
which Proposition 1 applies.

3.3 Non-uniform Input Densities

We next discuss how the above results generalize to the case where the input
density p(x) is not uniform. The smoothed version of the functional J [f ] in
equation (2) is now

Jρ[f ] =
n

2σ2

∫
(η(x) − f(x))2p(x)dx +

1
2
‖f‖2

H, (10)
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To minimize this over f one decomposes the latter into eigenfunctions of the
covariance kernel, rather than Fourier modes as before. The eigenfunctions are
defined by the property∫

k(x,x′)φs(x′)p(x′)dx′ = λsφs(x)

where the λs are the associated eigenvalues. We index both by a subscript s
to emphasize the similarity with the Fourier wavevector s we had so far; in
particular, λs is the analogue of S(s) above4. The eigenfunctions φs can always
be chosen as normalized and orthogonal with respect to the input density, so that∫
φs(x)φs′ (x)p(x)dx = δss′ and the covariance function has the decomposition

k(x,x′) =
∑

s λsφs(x)φs(x′). In terms of the components of f and η along
the eigenfunctions, f̃s =

∫
f(x)φs(x)p(x)dx and similarly for η̃s, the smoothed

functional (10) can then be written as

Jρ[f ] =
n

2σ2

∑
s

(η̃s − f̃s)2 +
1
2

∑ f̃2
s

λs
.

Minimization over the f̃s then gives f̃s = η̃s/[1+σ2/(nλs)] or, after reassembling
f(x) =

∑
s f̃sφs(x),

f(x∗) =
∑

s

η̃sφs(x∗)
1 + σ2/(nλs)

=
∫

h(x∗,x)p(x)η(x)dx′ (11)

where the equivalent kernel is now defined as

h(x∗,x) =
∑

s

1
1 + σ2/(nλs)

φs(x∗)φs(x) . (12)

One sees from this that, in general, the EK h(x∗,x) for non-uniform input den-
sities is a function of its two arguments separately rather than just of their
difference x∗ − x as in the uniform case. Also, the eigenfunctions φs(x) depend
in a nontrivial manner on the input density and will not be known a priori.

To gain more insight into the behaviour of the EK for non-uniform input
densities we now consider the specific case of one-dimensional inputs x with
Gaussian density p(x) = (2π)−1/2 exp(−x2/2) and a SE kernel. In that case the
eigenfunctions are known to be [11]

φs(x) = c1/4(2s−1s!)−1/2e−(c−1/4)x2
Hs(

√
2cx) s = 0, 1, . . . ,

4 More precisely, if the input density p(x) is uniform (= 1/V ) over a large cubic box
of size V = LD, then the eigenfunctions φs(x) = exp(2πis ·x) are indexed by Fourier
wavevectors s whose components are multiples of 1/L, and the eigenvalues are related
to the power spectrum by λs = V −1S(s). The resulting EK (12) reproduces the one
derived earlier in (5) once it is multiplied by p(x) = 1/V and the limit V → ∞ is
taken; see also the discussion later in the text.
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where c = [1/16 + 1/(4l2)]1/2 and Hs(·) is the s-th Hermite polynomial. The
associated eigenvalues decay exponentially, λs = l[2l(c − 1/4)]2k+1. The frac-
tion in equation (12) again drops from � 1 to � 0, around the eigenfunction
index sc where λsc � σ2/n. One can show that this drop becomes increasingly
steep as nλ0/σ

2 grows large, and imposing a hard cutoff at sc according to
h(x,x′) ≈

∑sc

s=0 φs(x)φs(x′) should then give a good approximation to the EK.
This approximation can in fact be evaluated in closed form because the eigen-
functions are, apart from s-independent factors, normalized orthogonal polyno-
mials. The Christoffel-Darboux formula [12, eq. 22.12.1] then gives for the hard
cutoff approximation to the EK

h(x, x′) ≈
√

sc + 1
4c

φsc+1(x)φsc (x
′)− φsc(x)φsc+1(x′)
x− x′ . (13)

In the results below, we have also calculated the unapproximated EK from equa-
tion (12), using the exact eigenfunctions and eigenvalues. We have compared this
with a grid-based calculation: if K is the covariance matrix on a grid of density
ρgrid, one can show that the appropriate estimate for the product h(x,x′)p(x′)
at the grid points is ρgridK[K + σ2ρgrid(nP )−1]−1 where P is the diagonal ma-
trix containing p(x) at the grid points. This is directly analogous to the grid
estimator we used for uniform input density, except for the replacement of the
data point density ρ by nP . Numerically the grid estimate appears more robust,
in particular for small � where a larger number of eigenfunctions contribute to
the EK.

A new issue in the case of non-uniform input densities is that both the EK
h(x∗,x) and the combination h(x∗,x)p(x) are meaningful. The former should
approximate the weights h(x∗) one obtains for predicting at x for a given train-
ing sample of n discrete points. Indeed, the integral on the right-hand side of
equation (11) is approximated by the discrete sum (1/n)

∑
i h(x∗,xi)yi so that

h(x∗,xi) approximates (n times) the weight given to training output yi. Figure 3
shows that this correspondence holds rather well.

The fact that the combination of the EK with the input density, h(x∗,x)p(x),
could be relevant is suggested by comparing the EK prediction (4) for the uniform
case with its non-uniform analogue (11). This shows that h(x∗,x)p(x) plays the
role of an effective smoothing kernel applied to the target function η(x). We
plot this combination in figure 4 and compare it to the result of the hard cutoff
approximation (13), for sample size n = 100 and noise level σ2 = 0.1. On the
left, where the covariance function lengthscale is � = 0.5, the approximation
is reasonable; as in the case of uniform input density, making the cutoff hard
produces more ringing. In the plot on the right, where � = 0.2, this effect is
rather more pronounced. This is consistent with the fact that the hard cutoff
approximation should improve as nλ0/σ

2 becomes large: this ratio is ≈ 390 for
the situation on the left but ≈ 181 on the right.

Finally, one suspects that the EK for non-uniform input densities should re-
duce to the one for uniform densities if it is sufficiently peaked. More precisely,
if the combination h(x∗,x)p(x) is concentrated in a region x ≈ x∗ that is suffi-
ciently small for p(x) to be regarded as constant there, then it should coincide
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Fig. 3. The EK for Gaussian input density p(x) and an SE covariance function with
� = 0.5, at noise level σ2 = 0.1 and for n = 100 data points. Solid line: numerically
calculated EK h(x∗, x) for x∗ = 1. Markers: weights h(x∗) for prediction at the same
point, for a random sample of n = 100 training inputs. The weights are multiplied by
a factor of n to show the correspondence with the EK.

with the corresponding EK h(x∗−x) for a uniform input density of ρ = np(x∗).
If ρ is large enough, one should be able to approximate further by using the
asymptotic form of the EK from Proposition 1.

We test this intuition in figure 5, for a covariance function with lengthscale
� = 0.2. For prediction at x∗ = 0, 1 and 2 we observe that the EK calculated for
uniform ρ provides a good approximation to the EK for the actual non-uniform
p(x), and the quality of asymptotic form from Proposition 1 is similar to the
uniform case. As |x∗| increases, the approximation of uniform density becomes
worse. This arises from two trends. On the one hand, the width of the EK itself
increases. On the other, the lengthscale over which p(x) varies – which is ∼ 1/x
for x > 1 – decreases. Eventually these two lengths therefore become comparable,
and the variation of p(x) can then no longer be neglected.

4 Understanding GP Learning Using the Equivalent
Kernel

We now turn to using EK analysis to get a handle on average case learning
curves for Gaussian processes. Here the setup is that a function η is drawn from
a Gaussian process, and we obtain ρ noisy observations of η per unit x-space
at random x locations; note that for simplicity we revert to the case of uniform
input density in this section. We are concerned with the mean squared error
(MSE) between the GP prediction f and η. Averaging over the noise process,
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Fig. 4. EK times input density, h(x∗, x)p(x), for Gaussian p(x), n = 100, σ2 = 0.1,
and prediction point x∗ = 1. The lengthscale of the covariance function is � = 0.5 on
the left, and � = 0.2 on the right. The dashed lines show the corresponding results for
the hard cutoff approximation (13).

the x-locations of the training data and the prior over η we obtain the average
MSE ε as a function of ρ. See e.g. [13] and [14] for an overview of earlier work
on GP learning curves.

To understand the asymptotic behaviour of ε for large ρ, we now approximate
the true GP predictions with the EK predictions from noisy data, given by
fEK(x) =

∫
h(x − x′)y(x′)dx′ in the continuum limit of “smoothed out” input

locations. We assume as before that y = target + noise, i.e. y(x) = η(x) + ν(x)
where E[ν(x)ν(x′)] = (σ2

∗/ρ)δ(x − x′). Here σ2
∗ denotes the true noise variance,

as opposed to the noise variance assumed in the EK; the scaling of σ2
∗ with ρ is

explained in footnote 1. For a fixed target η, the MSE is ε = (
∫
dx)−1

∫
[η(x) −

fEK(x)]2dx. Averaging over the noise process ν and target function η gives in
Fourier space

ε =
∫ {

Sη(s)[1− h̃(s)]2 + (σ2
∗/ρ)h̃

2(s)
}
ds

=
σ2

ρ

∫
(σ2/ρ)Sη(s)/S2(s) + σ2

∗/σ
2

[1 + σ2/(ρS(s))]2
ds (14)

where Sη(s) is the power spectrum of the prior over target functions. In the case
S(s) = Sη(s) and σ2 = σ2

∗ where the kernel is exactly matched to the structure
of the target, equation (14) gives the Bayes error εB and simplifies to

εB = (σ2/ρ)
∫

[1 + σ2/(ρS(s))]−1ds (15)
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Fig. 5. EK times input density, h(x∗, x)p(x) for Gaussian p(x), � = 0.2, n = 100,
σ2 = 0.1, and x∗ = 0, 1, 2, 3. Shown are the numerically calculated EK (solid lines), the
EK calculated for a constant data point density ρ = np(x∗) equal to the local density
at x∗ (dashed), and the approximation from Proposition 1 evaluated for the same ρ
(dotted, shown for x∗ = 1 only)

(see also [6, eq. 14-16]). Interestingly, this is just the analogue (for a continuous
power spectrum of the kernel rather than a discrete set of eigenvalues) of the
lower bound of [14] on the MSE of standard GP prediction from finite datasets.
In experiments this bound provides a good approximation to the actual average
MSE for large dataset size n [13]. This supports our approach of using the EK
to understand the learning behaviour of GP regression.

Treating the denominator in the expression (3) for εB again as a hard cutoff
at s = sc, which is justified for large ρ, one obtains for an SE target and learner
ε = εB ≈ σ2sc/ρ ∝ (log(ρ))D/2/ρ. Note that the Bayes error εB also indicates the
mean-squared size of the errorbar of our predictions, i.e. the predictive variance,
whether or not kernel and noise level match the target. This can be seen from
the terms quadratic in f in the functional Jρ[f ], equation (3).

To get analogous predictions of the MSE for the mismatched case, one can
write equation (14) as

ε =
σ2
∗
ρ

∫
[1 + σ2/(ρS(s))]− σ2/(ρS(s))

[1 + σ2/(ρS(s))]2
ds +

∫
Sη(s)

[S(s)ρ/σ2 + 1]2
ds.

The first integral is smaller than (σ2
∗/σ

2)εB and can be neglected as long as ε �
εB. In the second integral we can again make the cutoff approximation—though
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Fig. 6. Log-log plot of ε against log(ρ) for the OU and Matern-class processes (α =
2, 4 respectively). The dashed lines have gradients of −1/2 and −3/2 which are the
predicted rates.

now with s having to be above sc – to get the scaling ε ∝
∫∞

sc
sD−1Sη(s) ds. For

target functions with a power-law decay Sη(s) ∝ s−α of the power spectrum
at large s this predicts ε ∝ sD−α

c ∝ (log(ρ))(D−α)/2. So we generically get slow
logarithmic learning, consistent with the observations in [15]. For D = 1 and
an OU target (α = 2) we obtain ε ∼ (log(ρ))−1/2, and for the Matern-class
covariance function k(r) = (1 + r/�) exp(−r/�) (which has power spectrum ∝
(3/�2 + 4π2s2)−2, so α = 4) we get ε ∼ (log(ρ))−3/2. These predictions were
tested experimentally using a GP learner with SE covariance function (� = 0.1
and assumed noise level σ2 = 0.1) against targets from the OU and Matern-
class priors (with � = 0.05) and with noise level σ2

∗ = 0.01, averaging over
100 replications for each value of ρ. To demonstrate the predicted power-law
dependence of ε on log(ρ), in Figure 6 we make a log-log plot of ε against log(ρ).
The dashed lines show the gradients of −1/2 and −3/2 and we observe good
agreement between experimental and theoretical results for large ρ. We note
that the predictive variance εB ∼ 1/ρ (up to log-factors, see above) decays
much faster than the true MSE ε, illustrating the possibility of overconfident
predictions in mismatched scenarios.

5 Using the Equivalent Kernel in Kernel Regression

Above we have used the EK to understand how standard GP regression works.
One could alternatively envisage using the EK to perform kernel regression, on
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given finite data sets, producing a prediction ρ−1∑
i h(x∗ − xi)yi at x∗. Intu-

itively this seems appealing as a cheap alternative to full GP regression, partic-
ularly for kernels such as the SE where the EK can be calculated analytically,
at least to a good approximation. We now analyse how such an EK predictor
would perform compared to standard GP prediction.

Letting 〈·〉 denote averaging over noise, training input points and the test
point and setting fη(x∗) =

∫
h(x,x∗)η(x)dx, the average MSE of the EK pre-

dictor is

εpred =

〈[
η(x) − 1

ρ

∑
i

h(x,xi)yi

]2〉

=
〈

[η(x) − fη(x)]2 +
σ2
∗
ρ

∫
h2(x,x′)dx′

〉

+
1
ρ

〈∫
h2(x,x′)η2(x′)dx′

〉
− 1

ρ

〈
f2

η (x)
〉

=
σ2

ρ

∫
(σ2/ρ)Sη(s)/S2(s) + σ2

∗/σ
2

[1 + σ2/(ρS(s))]2
ds +

〈η2〉
ρ

∫
ds

[1 + σ2/(ρS(s))]2

Here we have set 〈η2〉 = (
∫
dx)−1

∫
η2(x) dx =

∫
Sη(s) ds for the spatial average

of the squared target amplitude. Taking the matched case, (Sη(s) = S(s) and
σ2
∗ = σ2) as an example, the first term in εpred (which is the one we get for the

prediction from “smoothed out” training inputs, see equation (14)) is of order
σ2sD

c /ρ, while the second one is ∼ 〈η2〉sD
c /ρ. Thus both terms scale in the same

way, but the ratio of the second term to the first is the signal-to-noise ratio
〈η2〉/σ2, which in practice is often large. The EK predictor will then perform
significantly worse than standard GP prediction, by a roughly constant factor,
and we have confirmed this prediction numerically. This result is somewhat sur-
prising given the good agreement between the weight function h(x∗) and the
EK that we saw in figure 2, leading to the conclusion that the detailed structure
of the weight function is important for optimal prediction from finite data sets.

One suspects intuitively that the suboptimal performance of the EK
smoother must be related to the underlying assumption of uniformly distrib-
uted inputs. We therefore show in figure 7 a situation with the same parameters
as in figure 2, but now for prediction at x∗ = 0.036. In the training set for this
figure there are two training points very near to this location, at x = 0.0359 and
x = 0.0362. One sees that the effect of this is to depress the weights of these and
nearby points significantly, causing deviations from the weights estimated from
the EK. This phenomenon is easiest to understand in the limiting case where
two training inputs essentially coincide, and there is no output noise. The true
GP predictor then halves the weights these points would have if they were far
apart: effectively, only one of the two points is used for prediction because the
second one contributes no further information about the target function. The
EK smoother, on the other hand, produces weights which are not sensitive to
the locations of the training points in this way, and effectively overcounts the
signal provided by the two nearby inputs. This problem would not be present
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Fig. 7. Plot of the weight function corresponding to ρ = 100 training points/unit length
(dots), plus the numerically computed equivalent kernel at x∗ = 0.036 (thick solid line)
and the sinc approximation from Proposition 1 (thin line)

when inputs are located on a regular grid, and indeed we find numerically that
then the EK performs very similarly to the full GP predictor.

If the above picture is correct, then the EK smoother should not only gen-
eralize relatively poorly, but also provide a suboptimal fit to the training data.
To check this, we worked out the average training error of the EK smoother,

εtrain =
1
n

∑
i

〈⎡⎣yi −
1
ρ

∑
j

h(x,xj)yj

⎤
⎦2〉

with the average taken as before over the noise process, the locations of the
training inputs and the prior over the underlying target function η. The averages
can be performed as in the calculation of the prediction error, but the number
of terms is larger because the case where i = j need to be treated separately.
With the abbreviation H = h(0)/ρ = ρ−1

∫
[1 + σ2/(ρS(s))]−1ds the result can

be written as

εtrain−(εpred+σ2
∗)=H2(σ2

∗+〈η2〉)−2H
{
σ2
∗ +

∫
Sη(s)

[
1− 1

1 + σ2/(ρS(s))

]
ds
}

(16)
The difference on the left-hand side is that between the training error and the
noisy prediction error. One expects both of these quantities to tend to σ2

∗ for
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large datasets; the noisy prediction error εpred + σ2
∗ clearly approaches the limit

from above, while the training error εtrain normally does so from below. For the
EK smoother one finds, by estimating the dominant term on the right-hand side
of equation (16) for the matched case (and for kernels where the approximation
of the integrals in terms of a hard cutoff on s works),

εtrain − σ2

(εpred + σ2)− σ2 →
〈η2〉 − σ2

〈η2〉+ σ2 for ρ →∞

For small noise, σ2 � 〈η2〉, the training error of the EK smoother thus actually
decreases towards its limiting value, in the same manner as the noisy prediction
error. This is consistent with our expectation that the EK smoother provides a
suboptimal fit to the training data. Only for large noise, σ2 > 〈η2〉, do we recover
the conventional behaviour whereby the training error approaches its limit value
from below. This makes sense: in this regime even the full GP predictor will not
ignore the second of two outputs corresponding to nearby input points, because
significant output noise needs to be averaged out before the target function is
learned.

6 Summary and Conclusion

In summary, we have derived accurate approximations for the equivalent kernel
(EK) of GP regression with the widely used squared exponential kernel, and
have shown that the same analysis in fact extends to a whole class of kernels. We
discussed how our results generalize to cases with non-uniform input densities,
and saw for the example of a Gaussian density that the resulting EK can often
be approximated in a reasonable manner by taking the data point density to be
uniform at its local value.

We have also demonstrated that EKs provide a simple means of understand-
ing the learning behaviour of GP regression, even in cases where the learner’s
covariance function is not well matched to the structure of the target function.
In future work, it will be interesting to explore in more detail the use of the EK
in kernel smoothing. This is suboptimal compared to standard GP regression
as we saw. However, it does remain feasible even for very large datasets, and
may then be competitive with sparse methods for approximating GP regression.
From the theoretical point of view, the average error of the EK predictor which
we calculated may also provide the basis for useful upper bounds on GP learning
curves.
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Abstract. Currently the best algorithms for transcription factor bind-
ing site prediction are severely limited in accuracy. There is good rea-
son to believe that predictions from these different classes of algorithms
could be used in conjunction to improve the quality of predictions. In
this paper, we apply single layer networks, rules sets and support vector
machines on predictions from 12 key algorithms. Furthermore, we use a
‘window’ of consecutive results in the input vector in order to contex-
tualise the neighbouring results. Moreover, we improve the classification
result with the aid of under- and over- sampling techniques. We find
that support vector machines outperform each of the original individual
algorithms and other classifiers employed in this work with both type
of inputs, in that they maintain a better tradeoff between recall and
precision.

1 Introduction

In this paper, we address the problem of identifying transcription factor binding
sites on sequences of DNA. There are many different algorithms in current use
to search for binding sites [1,2,3,4]. However, most of them produce a high rate
of false positive predictions. The problem addressed here is to reduce these false
positive predictions by means of classification techniques taken from the field of
machine learning.

To do this we first integrate the results from 12 different algorithms for
identifying binding sites, using non-linear classification techniques. To further
improve classification results, we employ windowed inputs, where a fixed number
of consecutive results are used as an input vector, so as to contextualise the
neighbouring results. The data has two classes labeled as either binding sites
or non-binding sites, with about 93% used being non-binding sites. We make
use of sampling techniques, working with a traditional neural network: single
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layer networks (SLN), rules sets (C4.5-Rules) and a contemporary classification
algorithm: support vector machines (SVM).

We expound the problem domain in the next section. In Section 3, we in-
troduce the datasets used in this paper. We explain how we apply under- and
over- sampling techniques in Section 4. A set of common metrics and receiver
operating characteristics graphs for assessing classifier performance are covered
in Section 5. Section 6 briefly introduces our experiments and gives all the ex-
perimental results. The paper ends in Section 8 with conclusions.

2 Problem Domain

One of the most exciting and active areas of research in biology currently, is un-
derstanding how the exquisitely fine resolution of gene expression is achieved at
the molecular level. It is clear that this is a highly non-trivial problem. While the
mapping between the coding region of a gene and its protein product is straight-
forward and relatively well understood, the mapping between a gene’s expression
profile and the information contained in its non-coding region is neither so sim-
ple, nor well understood at present. It is estimated that as much as 50% of the
human genome is cis-regulatory DNA [5] , undeciphered for the most part and
tantalisingly full of regulatory instructions. Cis-regulatory elements form the
nodes connecting the genes in the regulatory networks, controlling many impor-
tant biological phenomena, and as such are an essential focus of research in this
field [6]. Lines of research likely to directly benefit from more effective means of
elucidating the cis-regulatory logic of genes include embryology, cancer and the
pharmaceutical industry.

It is known that many of the mechanisms of gene regulation act directly
at the transcriptional or sequence level, for example in those genes known to
play integral roles during embryogenesis [6]. One set of regulatory interactions
are those between a class of DNA-binding proteins known as transcription fac-
tors and short sequences of DNA which are bound by the proteins by virtue of
their three dimensional conformation. Transcription factors will bind to a num-
ber of different but related sequences. A base substitution in a cis-regulatory
element will commonly simply modify the intensity of the protein-DNA interac-
tion rather than abolish it. This flexibility ensures that cis-regulatory elements,
and the networks in which they form the connecting nodes, are fairly robust to
various mutations. Unfortunately, it complicates the problem of predicting the
cis-regulatory elements from out of the random background of the non-coding
DNA sequences.

The current state of the art algorithms for transcription factor binding site
prediction are, in spite of recent advances, still severely limited in accuracy. We
show that in a large sample of annotated yeast promoter sequences, a selection
of 12 key algorithms were unable to reduce the false positive predictions below
80%, with between 20% and 65% of annotated binding sites recovered. These
algorithms represent a wide variety of approaches to the problem of transcription
factor binding site prediction, such as the use of regular expression searches,
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Fig. 1. The dataset has 68910 columns, each with a possible binding prediction (Y or
N). The 12 algorithms give their own prediction for each sequence position and one
such column is shown.

PWM scanning, statistical analysis, co-regulation and evolutionary comparisons.
There is however good reason to believe that the predictions from these different
classes of algorithms are complementary and could be integrated to improve the
quality of predictions.

In the work described here we take the results from the 12 aforemention
algorithms and combine them into 2 different feature vectors, as shown in the
next section. We then investigate whether the integrated classification results of
the algorithms can produce better classifications than any one algorithm alone.

3 Description of the Data

The data has 68910 possible binding positions and a prediction result for each
of the 12 algorithms, see Figure 1. The 12 algorithms can be categorised as
Single sequence algorithms (7) [1,7,8,9]; Coregulatory algorithms (3) [2,10]; A
Comparative algorithm (1) [3]; An Evolutionary algorithm (1) [4].

The label information contains the best information we have been able to
gather for the location of known binding sites in the sequences. Throughout
we have used the following notation: 0 denotes the prediction that there is no
binding site at this location; 1 the predictions that there is a binding site at
this location, while 0.5 indicates that this algorithm is not able to analyse this
location. The data therefore consists of 68910 12-ary ternary vectors each with
an associated binary valued label.

In this work, we divide our dataset into a training set and a test set: the first
2/3 is the training set and the last 1/3 is the test set. Amongst the data there
are many repeated vectors, some with the same label (repeated items) and some
with different labels (inconsistent items). It is obviously unhelpful to have these
repeated or inconsistent items in the training set, so they are removed. We call
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Fig. 2. The window size is set to 7 in this study. The middle label of 7 continuous
prediction sites is the label for a new windowed inputs. The length of each windowed
input now is 12 × 7.

the resulting data the consistent training set. However in the case of the test
set we consider both the full set of data and the subset consisting of only the
consistent test items. As can be seen in Table 1, the removal of repeated and
inconsistent data dramatically reduces the number of data items: roughly 95%
of data is lost.

As the data is drawn from a sequence of DNA nucleotides the label of other
near locations is relevant to the label of a particular location. We therefore
contextualise the training and test data by windowing the vectors as shown in
Figure 2. We use the locations up to three either side, giving a window size of
7, and a consequent input vector size of 84. This has the considerable additional
benefit of eliminating most of the repeated and inconsistent data: as can be seen
in Table 1 now less than 25% of the data is lost.

Table 1 gives the sizes of all the different data sets used in this paper. The
training set consists of either single vectors or windowed vectors. In both cases
only consistent, non-repeating data is used. The test data consists of either single

Table 1. Description of the datasets used in this work

type size

training consistent
single 1862

windowed 35577

single 1087

consistent
restricted
windowed 1087

test windowed 17045

full
single 22967

windowed 22967
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vectors or windowed vectors as appropriate. Either the full test set or the relevant
consistent subset is used. There is however, a special case, namely when we want
to compare the windowed model with the single input version. Here we want to
evaluate the windowed model on the locations represented in the consistent test
set of the single vector model. We therefore construct a test set for the windowed
model consisting of only those vectors corresponding to the 7 locations around
each of the data points in the single consistent test set.

4 Sampling Techniques for Imbalanced Dataset Learning

In our dataset, there are less than 10% binding positions amongst all the vec-
tors, so this is an imbalanced dataset [11]. Since the dataset is imbalanced, the
supervised classification algorithms will be expected to over predict the majority
class, namely the non-binding site category. There are various methods of deal-
ing with imbalanced data [12]. In this work, we concentrate on the data-based
method [13]: using under-sampling of the majority class (negative examples)
and over-sampling of the minority class (positive examples). We combine both
over-sampling and under-sampling methods in our experiments.

For under-sampling, we randomly selected a subset of data points from the
majority class. The over-sampling case is more complex. In [11], the author ad-
dresses an important issue that the class imbalance problem is only a problem
when the minority class contains very small subclusters. This indicates that
simply over sampling with replacements may not significantly improve minority
class recognition. To overcome this problem, we apply a synthetic minority over-
sampling technique as proposed in [13]. For each pattern in the minority class,
we search for its K−nearest neighbours in the minority class using Hamming
distance. A new pattern belonging to the minority class can then be generated
by employing the majority voting principle to each element of the K−nearest
neighbours in the feature vector space. We take 5 nearest neighbours, and dou-
ble the number of items in the minority class. The actual ratio of minority to
majority class is determined by the under-sampling rate of the majority class.
We investigate final ratios of a half, one and two. The cross validation process
(as described later) identified that a ratio of one half worked best for all the
classifiers used.

5 Classifier Performance

It is apparent that for a problem domain with an imbalanced dataset, classi-
fication accuracy rate is not sufficient as a standard performance measure. To
evaluate the classifiers used in this work, we apply Receiver Operating Charac-
teristics (ROC) analysis [18], and several other common performance metrics,
such as recall, precision and F-score [16,17], which are calculated to understand
the performance of the classification algorithm on the minority class. Prior to
introducing ROC curves, we give definitions of several common performance
metrics.
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5.1 Performance Metrics

Based on the confusion matrix computed from the test results (see Table 2, where
TN is the number of true negative samples; FP is false positive samples; FN is
false negative samples; FP is true positive samples), several common performance
metrics can be defined as follows:

Recall = TP / (TP + FN), (1)

Precision = TP / (TP + FP), (2)

F-score =
2 · Recall · Precision
Recall+Precision

, (3)

Accuracy =
TP+TN

TP+FN+TN+FP
, (4)

fp rate =
FP

FP+TN
. (5)

Table 2. A confusion matrix

TN FP

FN TP

5.2 ROC Curves

ROC analysis has been used in the field of signal detection for a long time.
Recently, it has also been employed in the machine learning and data mining
domains. Here we follow [18] to give a basic idea of ROC curves.

ROC Curves. In a ROC diagram, the true positive rate (also called recall, see
eq. (1)) is plotted on the Y axis and the false positive rate (fp rate, see eq. (5))
is plotted on the X axis. Points in the top left of the diagram therefore have a
high TP rate and a low FP rate and so represent good classifiers. The classifiers
used here all produce a real valued output, that can be considered as a class
membership probability. It is normal, when using a ROC diagram, to compare
classifiers, to generate a set of points in ROC space by varying the threshold
used to determine class membership. In this way a ROC curve corresponding to
the performance of a single classifier but with a varying threshold is produced.
One classifier is clearly better only when it dominates another over the entire
performance space [18]. One attractive property of ROC curves is that they
are insensitive to changes in class distribution, which makes them useful for
analysing performance of classifiers using imbalanced datasets.

As noted for a ROC curve to be generated a real valued classifier is needed.
The original SVM is a binary classifier. As described in [22] it is possible for
the SVM to generate probabilistic outputs. For majority voting and weighted
majority voting, we adopt methods proposed in [21]. The score assigned to each
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pattern is the fraction of votes won by the majority in majority voting; while in
weighted majority voting, each base algorithm votes with its confidence, which
is measured by the probability that the given pattern (I) is positive (P), i.e.,

p(P|I) ≈ TP / (TP + FP). (6)

The class with the highest summed confidence wins, and the score is the average
confidence. For the neural network classifiers a real valued output is automati-
cally generated.

Often to measure a classifier performance, it is convenient to use a single value
and the area under a ROC curve (AUC) can be used for this purpose. Its value
ranges from 0 to 1. An effective classifier should have an AUC more than 0.5.

6 Experiments

The classification techniques we used in this work are single layer network (SLN)
[14], support vector machine (SVM) [15], rule sets (C4.5-Rules) [20], majority
voting (MV), and weighted majority voting (WMV).

The SVM experiments were completed using libsvm, which is available from
the URL
http://www.csie.ntu.edu.tw/∼cjlin/libsvm. The C4.5-Rules experiments
were done using C4.5 software from [20]. C4.5-Rules is a companion program to
C4.5. It creates rules sets by post-processing decision trees generated using the
C4.5 algorithm first. The others were implemented using the Netlab toolbox,
which is available from the URL
http://www.ncrg.aston.ac.uk/netlab/.

6.1 Parameter Settings

All the user-chosen parameters are obtained using cross-validation. There are two
training sets (single or windowed), and for each of these sets, and each classifier,
the following cross validation procedure is carried out. The training set is divided
into 5 equal subsets, one of which is to be a validation set, and there are therefore
5 possible such sets. For each classifier a range of reasonable parameter settings
are selected. Each parameter setting is validated on each of the five validation
sets having previously been trained on the other 4/5 of the training data. The
mean performance as measured by the AUC metric over these 5 validations
is taken as the overall performance of the classifier with this parameter setting.
The parameter setting with best performance is then used with this classifier and
the corresponding data set (single or windowed) in the subsequent experiments.
For example the SVM has two parameters and six different combinations were
evaluated.

There are several approaches to generate an averaging ROC curve from the
different test sets [18]. In this paper, averaging ROC curves of cross-validation
are obtained by first generating an ROC curve for each of validation sets, and
then calculating the average scores from them.
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The standard deviation of AUC can be attained either using the cross-
validation method, or approximated as follows [19]:

se =

√
A(1 −A) + (Np − 1)(Q1 −A2) + (Nn − 1)(Q2 −A2)

NnNp
, (7)

where A denotes AUC, Nn and Np are the number of negative and positive
examples respectively, and Q1 = A

2−A , Q2 = 2A2

1+A .

7 Results

7.1 Cross Validation

In this experiment, we trained and tested the classifiers using 5-fold cross-
validation as described above. The best set of parameters for each classifier
were selected and the resulting AUC value (averaged over the 5-fold validation)
is shown in Table 3. Table 3 also shows standard deviations computed using
cross-validation. For single inputs, the SVM outperformed the SLN and C4.5-
Rules, while the C4.5-Rules have the best performance with windowed inputs. In
addition, due to the different size of the training sets (see Table 1), all classifiers
have smaller standard deviations with windowed inputs than single inputs.

7.2 Classification Results on the Consistent Test Set with Single
and Windowed Inputs

This test set has 1087 data points (see section 3) in both the single and windowed
versions.

The results are shown in Table 4, together with the best base algorithm (the
one with the highest F-score).

Compared with the best base algorithm, all classifiers, except MV increase
the F-score and decrease the fp rate. It can be seen that with single inputs,
the SVM is clearly the best classifier - it outperforms the others in terms of all
the performance metrics. However this is at a cost: in comparison to the best

Table 3. Cross Validation Results with Different classifiers

input classifier Mean of AUC std

SLN 79.20 3.81

single SVM 81.52 3.76

C4.5-Rules 71.42 1.61

SLN 78.49 0.44

windowed SVM 79.98 0.30

C4.5-Rules 84.15 0.63
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base algorithm the recall has been decreased. The classifier has become more
conservative, predicting binding sites less often but with greater accuracy. With
windowed inputs the SVM has a slightly better AUC score while the C4.5-Rules
do best on all the other measures. When comparing the single and windowed
results the only major difference is that C4.5-Rules does a lot better with win-
dowed data.

Figure 3 shows ROC curves obtained using the consistent test set and single
inputs. The curves confirm that the SVM gives best performance and MV and
C4.5-Rules are the weakest.

7.3 Classification Results on the Consistent Test Set with
Windowed Inputs

The results on the windowed, consistent test set, containing 17045 data points
are given in Table 5 with the corresponding ROC curves in Figure 4. Both the
SVM and the SLN do better than the best base algorithm, though once again the
SVM is the best performer. The ROC curve clearly shows the poor performance
of C4.5-Rules. It appears to be overfitting the training set, and this is confirmed
by its excellent performance in the cross validation using the training sets, see
Table 3.

Table 4. Common performance metrics (%) tested on the same consistent possible
binding sites with single and windowed inputs separately. Some of the best results are
shown in bold.

input Classifier recall precision F-score Accuracy fp rate AUC±se

best Alg. 58.23 14.74 23.53 72.49 26.39 -

SLN 37.97 24.0 29.41 86.75 9.42 72.23±3.33

single SVM 37.97 28.85 32.79 88.68 7.34 73.25±3.30

C4.5-Rules 37.97 19.11 25.42 83.81 12.60 67.45±3.43

MV 48.10 15.57 23.53 77.28 20.44 64.38±3.46

WMV 53.16 19.35 28.38 80.50 17.36 70.92±3.36

SLN 50.63 17.78 26.32 79.39 18.35 72.73±3.32

windowed SVM 51.90 20.20 29.08 81.06 16.07 73.23±3.30

C4.5-Rules 46.84 22.70 30.58 84.54 12.50 72.58±3.32

7.4 Classification Results on the Full Test Set with Single and
Windowed Inputs

In this experiment, we use the full contiguous test set. All the results are pre-
sented in Table 6, and the ROC curve for single input vectors shown in Figure
5. The ROC curve for windowed vectors is almost exactly the same as Figure 4.
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Table 5. Common performance metrics (%) tested on 17045 consistent data points
with windowed inputs.

input Classifier recall precision F-score Accuracy fp rate AUC±se

best Alg. 38.28 16.68 23.24 83.41 13.42 -

SLN 31.40 18.75 23.48 86.58 9.55 65.59±0.91

windowed SVM 35.15 20.18 25.64 86.63 9.76 67.03±0.91

C4.5-Rules 18.69 17.01 17.81 88.68 6.40 57.69±0.92

Table 6. Common performance metrics (%) tested on the full test set with single and
windowed inputs.

input Classifier recall precision F-score Accuracy fp rate AUC±se

best Alg. 36.36 18.40 24.44 85.97 10.73 -

SLN 12.28 21.23 15.56 91.68 3.03 66.13±0.81

single SVM 15.07 26.44 19.20 92.08 2.79 66.23±0.81

C4.5-Rules 11.24 16.84 13.48 91.00 3.69 49.35±0.78

MV 35.73 15.12 21.25 83.48 13.35 61.66±0.81

WMV 34.75 20.04 25.42 87.28 9.23 63.75±0.81

SLN 30.01 20.78 24.56 88.50 7.61 67.16±0.89

windowed SVM 33.43 22.10 26.61 88.50 7.84 68.0±0.80

C4.5-Rules 16.89 17.70 17.29 89.92 5.22 58.04±0.81

Looking at the results for the single inputs once again the SVM performs
well. Although its recall is lower than the best base algorithm, this is explained
by its far lower fp rate. The C4.5-Rules perform particularly poorly, as is shown
in Figure 5, where over most of the range it is predicting below random.

With windowed inputs the story is very much the same. In fact the windowed
SVM is the overall best performer across single and windowed classifiers.

8 Conclusions

The significant result presented here is that by integrating the 12 algorithms we
can considerably improve binding site prediction. In fact when considering the
full contiguous test set, we are able to reduce the false positive predictions of
the best base algorithm by 27%, whilst maintaining about the same number of
true positive predictions. As expected the SVM gave a better classification result
than the SLN and the decision trees. Majority voting was actually worse than
the best individual algorithm. However, weighted majority voting was a little
better. C4.5 has a tendency to badly overfit the training data and produce very
poor predictions, sometimes worse than random.
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Fig. 3. ROC graph: five classifiers applied to the consistent test set with single inputs
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Fig. 4. ROC graph: three classifiers applied to the consistent test set using windowed
inputs
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Fig. 5. ROC graph: five classifiers applied to the full test set with single inputs.

Future work will investigate i) using real valued algorithm results in the
input vector; ii) using algorithm based technologies to cope with the imbalanced
dataset; iii) considering a wider range of supervised meta-classifiers or ensemble
learning algorithms. Another important avenue to explore will be to examine
the biological significance of the results and we are currently working on using
a visualisation tool.
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Abstract. In this paper, we introduce a new method (SVM 2K) which
amalgamates the capabilities of the Support Vector Machine (SVM) and
Kernel Canonical Correlation Analysis (KCCA) to give a more sophisti-
cated combination rule that the boosting framework allows. We show how
this combination can be achieved within a unified optimisation model to
create a consistent learning rule which combines the classification abil-
ities of the individual SVMs with the synthesis abilities of KCCA. To
solve the unified problem, we present an algorithm based on the Aug-
mented Lagrangian Method. Experiments show that SVM 2K performs
well on generic object recognition problems in computer vision.

1 Introduction

The Support Vector Machine [1] is a new generation of learning systems based on
advances in statistical learning theory. It delivers state-of-the-art performance
in real world applications, such as text categorisation, hand-written character
recognition, image classification, bio-sequence analysis, etc.

Increasing amounts of multimedia data have become easily accessible in re-
cent years – driving the need to develop methods to efficiently analyse and search
this data. In [2], it has been shown that the combination of different types of
features is able to give a more accurate result than each component can sepa-
rately. Similarly, Hardoon D.R. et al.[3] show how Kernel Canonical Correlation
Analysis (KCCA)[4] can be used to combine image and text extracted from the
web to improve web page classification. KCCA has been successfully applied in
information retrieval applications where one of two views is used to retrieve the
other, such as of cross-lingual retrieval [5] and content-based image retrieval[3,6].

In [7], the authors combine different components for a generic object classi-
fication task. Again, KCCA is used to learn the semantic feature space between
different features from the same image and produce a new SVM kernel function.
The new kernel mapping can efficiently combine two distinctive features into a
semantic one, and significantly improve classification accuracy.

The traditional SVM can not deal with multiple types of features directly,
limiting its application in this area. Based on kernel methods, recent progress
has focused on developing different optimization models to solve this kind of
problem.

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 242–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Lanckriet G.R. and his co-researchers [8,10] describe a method for combining
multiple kernel representations in an optimal fashion, by formulating a convex
optimization problem which is solvable by Semidefinite Programming (SDP). In
[11], they used Sequential Minimal Optimization (SMO) to solve this problem
efficiently. The method was applied to the problem of predicting yeast protein
functional classifications. On this problem their method performs better than a
SVM trained on any single source of the data and a previously-described Markov
random field based algorithm.

Andrews S. et al. [12] presented two new formulations for multiple-instance
learning as maximum margin problems solvable by mixed integer quadratic pro-
grams. These extensions created a state of the art classification technique making
all the SVM learning approaches, including non-linear classification via kernels,
available to an area that up to now has been largely dominated by special pur-
pose methods.

The main common point of these approaches is that they extended standard
SVM optimization problem by adding some specific rules to the kernels or to
the features.

In this paper, we propose a new method (SVM 2K) to solve this kind of
problem. by exploiting the interaction of the decision functions provided by the
per-feature set SVM subproblems. The subproblem SVMs focus on classification
based upon each distinct feature set, whilst a KCCA like algorithm manages
their interaction to synthesise a single learner from the sub-SVMs and hence
improve generalisation performance. We show how these disparate functions can
be formulated in a unified optimisation model to create a consistent learning rule.
To cope with the complexity of solving this unified problem we have developed
a new algorithm based on Augmented Lagrangian method.

2 Problem Addressed

Learning via two feature set recently attracts several researchers to improve
the capability of known learning techniques. Dasgupta et al. [9] showed a learner
can exploit explicit or implicit interactions between different features to decrease
the generalization error. Analogue approaches call this kind of approaches as co-
training, multi-task or multi-view learning to define their underlying concepts.
This techniques are mostly applied for semi-supervised learning, where the sec-
ond source of the features relates to a set of unlabeled data. The base idea behind
these approaches if the learners highly agree on the training set then their gen-
eralization error is probably smaller. Some examples are of these papers Blum
et al. [18], Evgeniou et al. [19] and Muslea et al. [20].

Conjecturing the extendibility of this result we created a maximum margin
framework for a pair of SVM classifiers working on two sources of input features.

We have a set St = {s(t)
i = (x(t)

i , yi), i = 1, . . . ,m}, t = 1, . . . , T of samples
drawn from the same unknown distribution. Every sample St comprises the
same object with the same labels y = {yi = {−1,+1}} but the sets of feature
vectors {x(t)

i ∈ Xt} are different. Furthermore, for each set of features there is
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Fig. 1. This is the outline of our method. Two distinct feature sets were combined in
the training by an integrated SVM optimization problem. And the decision functions
were combined in the test process.

a mapping φt : Xt → Rnt defined on the feature vectors. The task is to find a
function f : RT → {−1, 1} and a set functions ht : Rnt → R such that they
give the best prediction for the labels y with respect to a given loss functional
following the form yi ∼ f(h1(φt(x

(t)
i )), . . . , hT (φT (x(T )

i ))). Assume the functions
{ht} are linear, i.e., ht(z) = zTwt + bt, for all t = 1, . . . , T .

To solve this type of problem the trivial approach of simply concatenating the
feature vectors x(t)

i together to form a single long feature vector to which con-
ventional learning methods, such as an SVM, can be applied appears promising.
However, one problem with this approach is that different kernels may work best
with different feature sets, for example linear with feature set 1 and Gaussian
with feature set 2. As a single SVM can only use one kernel, using the concate-
nated features we will be forced to use a kernel which is not suited to the data
– potentially reducing performance.

The question is now how to create a classification method based upon these
distinct features that is able to realise the potential advantages of the distinct
sources of information.

Let us reduce the problem size T given by the number of distinct features
to 2 and used the indeces A and B instead of the numbers. Consider the SVM
style optimization problem

min 1
2 (||wA||22 + ||wB||22) + 1T (CAξA + CBξB + Dη)

with respect to
wA, wB, bA, bB, ξA, ξB, η

subject to
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Synthesis ψ(〈wA, φA(xA
i )〉+ bA, 〈wB, φB(xB

i )〉+ bB) ≤ ηi + ε,

subSVM1 yi(〈wA, φA(xA
i )〉+ bA) ≥ 1− ξA

i ,

subSVM2 yi(〈wB , φB(xB
i )〉+ bB) ≥ 1− ξB

i ,

ξA ≥ 0, ξB ≥ 0, η ≥ 0, i = 1, . . . ,m,

ξA = (ξA
1 , . . . , ξA

m), ξB = (ξB
1 , . . . , ξB

m),
η = (η1, . . . , ηm).

(1)

In this formulation 1 is a vector for which every component equals to 1 and Y is
a diagonal matrix containing the labels {yi, i = 1, . . . ,m}. The constants CA,
CB and D are penalty parameters. The important part of this formulation is
the synthesis function ψ which links the 2 SVM subproblems by forcing them to
be similar with respect to the values of the decision functions.

In this paper we define ψ in one of the simplest ways, namely using the
absolute value of the differences for every i = 1, . . . ,m. That is,

ψ(〈wA, φA(xA
i )〉 + bA, 〈wB , φB(xB

i )〉 + bB)=|〈wA, φA(xA
i )〉 + bA −〈wB , φB(xB

i )〉− bB |.

3 Framework of the Solution

3.1 Problems Arising

Before detailing our approach we need to make some remarks about the problem
at hand. First we remove the absolute value by unfolding the synthesis constraint
as a pair of constraints for all i,

+〈wA, φA(xA
i )〉+ bA − 〈wB, φB(xB

i )〉 − bB ≤ ηi + ε,
−〈wA, φA(xA

i )〉 − bA + 〈wB, φB(xB
i )〉+ bB ≤ ηi + ε,

i = 1, . . . ,m.
(2)

Now, let KA=(KA
ij = 〈φA(xA

i ), φA(xA
j )〉 and KB = (KB

ij=〈φB(xB
i ), φB(xB

j )〉,
where i, j=1, . . . ,m. Then the dual of (1) gives

min 1
2 (gA)TKAgA + 1

2 (gB)TKBgB − 1T αA − 1T αB + ε(1T β+ + 1T β−)
with respect to
αA,αB,β+,β−

subject to
1TgA = 0, 1TgB = 0,

gA = Y αA − β+ + β−, gB = Y αB + β+ − β−,
0 ≤ αA ≤ CA, 0 ≤ αB ≤ CB,

0 ≤ β+ + β− ≤ D, 0 ≤ β+, 0 ≤ β−,

(3)

where αA and αB are the dual vector variables belonging to the sub-SVM prob-
lems, and β+ and β− are the dual vector variables corresponding to the unfolded
synthesis constraints. The sign in the superscript of β indicates the sign of the
expression within the absolute value.
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The main difficulties with this problem are;

– The dimensionality of the problem blows up by the factor 4 compared to the
single SVM case.

– The constraints (2) are pairwise mutually exclusive at a fixed index i. The
consequence of this is an additional constraint set

β+
i β−

i = 0, i = 1, . . . ,m (4)

which makes the dual feasibility domain be non-convex.

Table (4) shows that applying a general purpose solver to this problem results
in excessively long computational times. In the next subsection we show that the
structure of the optimization problem has high redundancy which a specialised
algorithm can exploit to significantly reduce these times.

3.2 Components

Let us consider first the general form of a quadratic programming problem with
linear equality and some additional box constraints.

minz
1
2z

TQz + qT z
subject to
Az = d,
z ∈ Ẑ.

(5)

Casting the dual problem (3) into this form we have matrices

Q =

⎡
⎢⎢⎣
Y KAY ∅ −Y KA Y KA

∅ Y KBY Y KB −Y KB

−Y KA Y KB KA + KB −KA −KB

Y KA −Y KB −KA −KB KA + KB

⎤
⎥⎥⎦ , (6)

A =
[
1TY ∅ −1T 1T

∅ 1TY 1T −1T

]
, (7)

and vectors like these

q =

⎡
⎢⎢⎣
−1
−1
ε1
ε1

⎤
⎥⎥⎦ , d =

[
0
0

]
, z =

⎡
⎢⎢⎣

αA

αB

β+

β−

⎤
⎥⎥⎦ , (8)

and finally the set Ẑ covers the box and the additional complementarity con-
straints and it is given by

Ẑ = {z|0 ≤ αA ≤ CA, 0 ≤ αB ≤ CB,
0 ≤ β+ + β− ≤ D, 0 ≤ β+, 0 ≤ β−,

β+
i β−

i = 0, i = 1, . . . ,m}.
(9)
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The structure of Q reveals an additional difficulty, namely the third and
fourth row of sub-blocks can be expressed as linear combinations of the first and
the second row. These relationships can be shown by multiplying the first and
second row with Y and computing the difference of the second and the first row
giving the third one and the difference of the first and the second row giving the
fourth one.

These matrices and vectors comprise highly redundant components. Applying
an optimization algorithm exploiting the particular structure of the problem we
can gain one or two orders of magnitude reduction in the processing time.

3.3 Reformulation of the Dual

To decrease the dimension of the problem and get rid of the non-convexity a
substitution is introduced. One can recognise the dual variables occur pairwise
in the objective function as well as in the constraints. Let u+ = β+ + β− and
u− = β+ − β−. Exploiting the complementarity constraints (4) then we can
derive

u+ = |u−|, −D ≤ u− ≤ D. (10)

Thus, we can drop the variable u+ and the feasibility domain becomes con-
vex, but, unfortunately, the objective function has an un-differentiable term
ε(β+ + β−) = ε|uN |. To relax that we replace it with ε(u−Tu−). After these
modifications the components are changed to

Q =

⎡
⎣Y KAY ∅ −Y KA

∅ Y KBY Y KB

−Y KA Y KB KA + KB + εI

⎤
⎦ , (11)

where I is the identity matrix, and

A =
[
1TY ∅ −1T

∅ 1TY 1T

]
, (12)

furthermore the vectors become

q =

⎡
⎣−1
−1
0

⎤
⎦ , d =

[
0
0

]
, z =

⎡
⎣αA

αB

u−

⎤
⎦ . (13)

Finally, the box constraints are simplified as well

Ẑ = {z|0 ≤ αA ≤ CA, 0 ≤ αB ≤ CB,
−D ≤ u− ≤ D}. (14)

3.4 Augmented Lagrangian Formulation

We are given a constrained optimization problem

minz f(z)
subject to
h(z) = 0,

(15)
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where z ∈ Rn, f is a scalar and h is a vector valued function. Let λ be the
Lagrangian multiplier vector corresponding to the constraint h(z) = 0. The
Augmented Lagrangian function of (15) is

Lc(z,λ) = f(z) + λTh(z) + c
2 ||h(z)||2, (16)

where c is a large positive scalar. By using the Augmented Lagrangian form one
can transform a constrained problem into an unconstrained one. It is possible to
make a partial elimination where the aim is to reduce the complexity of the set
of the constraints into and easy and a hard part. This case gives,

minz f(z)
subject to
h(z) = 0,
z ∈ Ẑ,

(17)

where Ẑ is the easy constraint and h(z) = 0 the hard one. We can then use the
Augmented Lagrangian function of (17) to remove the hard constrain, giving

minz,λ f(z) + λTh(z) + c
2 ||h(z)||2

subject to
z ∈ Ẑ,

(18)

The following statement gives the fundamental convergence result explaining
how the Augmented Lagrangian can work for a constrained optimization. For a
proof and more background the reader is referred to Bertsekas [13]

Proposition 1. Assume that f and h are continuous functions, that Ẑ is a
closed set, and that the constraint set {z ∈ Ẑ|h(z) = 0} is nonempty. For k =
1, . . . , let zk be a global minimum of the problem

minLck(z,λk)
subject to

z ∈ Ẑ,

(19)

where {λk} is a bounded sequence of the approximations for the dual variables
corresponding to the constraint h(z) = 0, 0 < ck < ck+1 for all k, and ck →∞.
Then every limit point of the sequence {zk} is a global minimum of the original
problem (15).

In order to apply the Augmented Lagrangian approach for our problem we
need to modify the matrix Q and the vector q given in the objective function of
the original quadratic problem. These modifications are

Q̃ = Q +
c

2

⎡
⎣Y 11TY ∅ −Y 11T

∅ Y 11TY Y 11T

−11TY 11TY 211T

⎤
⎦ , (20)
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and

q̃ = q +

⎡
⎣ λAY 1

λBY 1
(−λA + λB)1

⎤
⎦ , (21)

where λA and λB are the Lagrangian multipliers corresponding to the constraints
1T gA = 0 and 1T gB = 0 respectively

3.5 Algorithm Skeleton

The basic procedure for solving an Augmented Lagrangian problem is as follows,

Step 1. Let λ0 be an initial solution for the Lagrangian multipliers, c0 be a
given initial value for the scalar c, γc is the multiplier for c, ελ be a required
accuracy and k = 0.

Step 2. Solve the problem for z at fixed λk

minz Lck(z,λk)
subject to

z ∈ Ẑ,

(22)

The optimum solution is denoted by zk.
Step 3. Update the Lagrangian multipliers by λk+1 = λk + ckh(zk) and the

running constant by ck+1 = γcc
k.

Step 4. If ||h(zk)|| < εh

Then Stop!
Else Set k = k + 1 and go to Step 2!

The next subsection presents the algorithm for (22)

3.6 Conditional Gradient Method for solving the Lagrangian
Subproblem

The conditional gradient method is a simple gradient descent method suited
to constrained problems. Let us consider problem (15). Based on the first order
optimality condition and assuming z∗ is an optimum solution then the inequality

∇f(z∗)(z− z∗) ≥ 0 (23)

has to hold for any z satisfying h(z) = 0. The basic idea exploited in this
algorithm is to find a feasible solution which minimises (23) at an approximation
of the optimum solution and hence get closer to the real optimum. The nice fact
in our case is that this optimisation problem has a very simple linear form which
is solvable in linear time with respect to the dimension of the gradient. The
schema of the algorithm reads as follows

Step 1. Let zk
0 be an initial solution, εz > 0 be expected accuracy and t=0.
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Step 2. Solve the linear programming problem

minz∇Lck(zk
t ,λ

k)T (z− zk
t )

subject to
z ∈ Ẑ.

(24)

Let the optimum solution be denoted by zk
∗

Step 3. Compute the next approximation of the solution using

zk
t+1 = zk

t + τ(zk
∗ − zk

t ), (25)

where τ is derived by line search.
Step 4. If ||∇Lck(zk

t ,λ
k)|| ≥ −εz holds

Then Stop!
Else set t = t + 1 and go to Step 2

The closed form of the solution for (24) is presented in the next subsection.
3.7 Solution of the Linear Subproblem

The subproblem (24) is a linear programming problem in the form

minz dT z
subject to
z = Ẑ,

(26)

where Ẑ is defined by the constraints

0 ≤ αA ≤ CA,
0 ≤ αB ≤ CB,
−D ≤ u− ≤ D,

(27)

and d = Lck(zk
t ,λ

k
t ) for a fixed k and t.

Let d be split into three parts d = (dαA ,dαB ,du−) corresponding to the
subsets of the vector variable z. The components of an optimum solution can be
computed by

αA
i =

{
CA if (dαA)i < 0,
0 otherwise , (28)

αB
i =

{
CB if (dαB )i < 0,
0 otherwise , (29)

u−
i =

{
D if (du−)i < 0,
−D otherwise. . (30)

for any i = 1, . . . ,m.

4 Application to Generic Object Recognition

The proposed method was applied to a generic object recognition task for a
computer vision problem.
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4.1 Data Set and Features

Two data sets were used in our experiments. The first one is a difficult dataset1

used by Opelt et. al[14]). These images contain the objects at arbitrary scales
and poses with highly textured background. There are two categories of objects,
persons (P) and bikes (B), and images containing none of these objects (N).
We tested the images containing an object (e.g. of categories B and P) against
non-object images from the database (e.g. of category N). The performance was
measured with the receiver-operating characteristic (ROC) corresponding error
rate ([14,15]). The training set contains 100 positive and 100 negative images.
The tests are carried out on 100 new images, half belonging to the learnt class
and half not.

The second dataset2 is commonly used for generic object recognition, for
example by Opelt et al. [14], Fergus et al. [15] and other papers. The three object
classes in this dataset are; motorbikes, aeroplanes and faces. It also contains an
additional background class.

For each image two sets of low level features were computed. One3 used the
affine invariant Harris detector[16] developed by K.Mikolajczyk and C.Schmid
to detect interest points within an image and Invariant Moment’s as patch de-
scriptors. The other used David Lowe’s keypoint detector4 to detect interesting
patches with SIFT[17] patch descriptors. These sets of image patch descriptors
then form the basis of the feature generation.

Because different images have different numbers of interest points vector
quantisation was used to map these sets of points into a fixed length feature
vector. Specifically, k-means was used to learn K cluster centers based upon the
features from all images. For each image a fixed length K feature vector was then
created by recording the minimum distance between an image feature and each
of these K centers. In all the following experiments, the parameter for clustering
was chosen as K = 400.

4.2 Experimental Results

The results were compared to the one in which individual features were the input
of the SVM. It is also compared with the SVM solution working on the mixed
features, where the feature vectors were concatenated into a high dimensional
vector. These results were also compared to the state of the art performance
obtained by other methods.

State of the Art Performance. The state of the art performance of these two
data sets by using different methods are listed in Table 1 and Table 2. In Table 1,
a complex boosting algorithm[14] was used on the Invariant Moment features and
SIFT features of dataset 1. In Table 2, the boosting algorithm[14] was applied

1 Available at http://www.emt.tugraz.at/∼pinz/data/
2 Available at http://www.robots.ox.ac.uk/∼vgg/data/
3 Available at http : //lear.inrialpes.fr/people/Mikolajczyk/.
4 Available at http : //www.cs.ubc.ca/ ∼ lowe/keypoints/
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on dataset 2 and compared to the previous state of the art performance obtained
by Fergus et al.[15].

Table 1. Classification accuracy based on boosting algorithm[14] according to ROC
Equal Error Rate on dataset 1

Dataset Moment SIFT

Bikes 76.5 86.5
Persons 68.7 80.8

Table 2. Classification accuracy based on the algorithms in [15] and[14] according to
ROC Equal Error Rate on dataset 2

Dataset Fergus et al.[15] Opelt et al.[14]

Motorbikes 92.5 92.2
Airplanes 90.2 88.9
Faces 96.4 93.5

Single and Concatenated Feature-Set SVM Performance. A SVM was
trained for each of the Invariant Moment and SIFT features separately and on
the features created by concatenating them. The results are listed in the following
Table 3.

Results on SVM 2K. In Table 4 the computation times are presented for each
data set. This compares a general purpose solver (from the MATLAB Optimisa-
tion Toolbox) with the algorithm presented in this paper. These results clearly
show that our specialised solver can solve the SVM 2K problem in a very short
time without convergence difficulties.

The classification performance of our new method is presented in Table 5.
Two sets of results are presented to demonstrate how classification performance
is influenced by the setting of various algorithm parameters. The columns la-
belled “preselected” contain the results corresponding to the fixed training and
test sets those are defined in [15]. The columns labelled “random” show the
accuracies when 2-fold cross-validation was computed with 5 repetitions on the
union of the preselected training and test sets. For the latter case the mean and
the standard deviation of the accuracies were computed.

5 Conclusion and Discussion

In this paper we proposed a new method to combine KCCA and SVMs into a
single classifier. Real world applications show promising performance with this
approach.
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Table 3. Classification accuracy based on SVM according to ROC Equal Error Rate
on dataset 1

Dataset Moment SIFT Concatenated

Bikes 74.1011 76.0141 75.9375
Persons 75.8411 72.8348 73.9102
Motorbikes 95.318 94.9583 95.0871
Airplanes 92.3925 97 97.25
Faces 97.9527 96.4747 98.5148

Table 4. Computation times for each dataset using different optimization methods

MATLAB Optimization Augmented
Data sets Toolbox Lagrangian

Bike 1320s 8.5s
Persons 1080s 10.8s
Motorbikes > 1 day(43h) 43s
Aeroplanes > 1 day 42s
Faces > 1 day 65s

Table 5. Classification accuracies computed by the Augmented Lagrangian method

Accuracies(%): mean(std)
CA = 1, CB = 1, D = 0.5 CA = 0.2, CB = 0.2, D = 0.1

ε = 0.001 ε = 0.001
Data sets Preselected Random Preselected Random

Bike 84.00 76.85(3.75) 81.00 81.65(7.00)
Persons 80.00 72.56(10.80) 82.00 73.74(8.07)
Motorbikes 92.82 90.35(4.68) 93.53 95.06(0.94)
Aeroplanes 97.88 92.59(2.67) 97.88 96.22(1.34)
Faces 99.25 98.75(1.19) 99.10 99.16(0.46)

From Table 3, it is clear that the standard SVM based on individual or
concatenated features can give good performance on dataset 2. The results are
much better than the previous results. But they are not so good as for dataset 1.

From Table 5, one can see that SVM 2K outperforms both the standard SVM
and other approaches – especially, for data set 2. Meanwhile, the algorithms
based on Augmented Lagrangian method provides efficient implementation.

The experiments show that the performance for different feature sets is highly
dependant on the choice of penalty parameters. It claims further investigation
on finding an optimal or a nearly optimal configuration for a given learning
problem.
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To compare the SVM 2K approach correctly with the standard SVM, theoret-
ical analysis of the statistical learning theory based generalisation performance
should be studied.
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Abstract. In classification problems, machine learning algorithms often
make use of the assumption that (dis)similar inputs lead to (dis)similar
outputs. In this case, two questions naturally arise: what does it mean
for two inputs to be similar and how can this be used in a learning algo-
rithm? In support vector machines, similarity between input examples
is implicitly expressed by a kernel function that calculates inner prod-
ucts in the feature space. For numerical input examples the concept of
an inner product is easy to define, for discrete structures like sequences
of symbolic data however these concepts are less obvious. This article
describes an approach to SVM learning for symbolic data that can serve
as an alternative to the bag-of-words approach under certain circum-
stances. This latter approach first transforms symbolic data to vectors
of numerical data which are then used as arguments for one of the stan-
dard kernel functions. In contrast, we will propose kernels that operate
on the symbolic data directly.

1 Introduction

The similarity between examples of a set of data often gives much information
about the patterns that may be present in that data. Therefore some machine
learning (ML) algorithms try to make use of as many similarity information
about the input examples as possible. One of the best known examples is the
k-nearest neighbours algorithm in which a metric defined on the input examples
determines the distance between a new unseen example and the examples stored
in memory. This new example is then assigned to one of the classes based on
the k nearest examples in memory. In these applications the choice of metric is
a very important one as it will have a direct influence on the classification of
a new example. Therefore it is important to choose a metric in function of the
relevant characteristics of the application under consideration. For real input
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examples the Euclidean distance is often used, for discrete data like strings,
sequences or natural language data the choice of metric is often much harder to
make as the concept of a distance is not always easy to define in this context.
Moreover, once we have a similarity measure on the input examples it will not
always be directly usable in the learning algorithm as it is the case for k-nearest
neighbours. In some algorithms the similarity measure is not directly observable
and subject to a number of conditions imposed by the learning algorithm. In
that sense it is not always easy to use the best available measure in the learning
algorithm.

In support vector machine (SVM) learning, similarity information is implic-
itly contained in the kernel function. Positive definite (PD) kernel functions are
related to one of the most simple similarity measures available: inner products.
In practice however, we often have dissimilarity measures under the form of dis-
tance functions, the larger the distance the larger the dissimilarity. Dissimilarity
information can be incorporated in a PD kernel through the normed distance
between examples or by considering the class of conditionally positive definite
(CPD) kernels, which are kernels that calculate generalized distances in the fea-
ture space [1]. Concepts like inner products and metrics are clearly understood
and straightforward in the case of real input examples, for discrete examples
like strings these concepts are not straightforward. Moreover when working with
large amounts of textual data there is also the issue of computational perfor-
mance. Therefore, in SVM learning, symbolic data is often first transformed to
real data and then a standard kernel working on the transformed input examples
is used to do classification. This approach is generally known as the bag-of-words
(BOW) approach and it was first introduced to do classification of large amounts
of text [2].

The problems we will consider here are 1) language independent named entity
recognition (LINER) and 2) protein secondary structure prediction (PSSP). In
LINER it is the purpose to determine for all the words in a text whether the word
refers to a proper name or not, and, if it refers to a proper name it will also be
indicated what kind of proper name, i.e. name of a person, organization, location
etc. In PSSP it is the purpose to decide for each amino acid in a sequence of
amino acids whether it belongs to a α-helix, β-sheet or a coil. Each instance of
both problems can be represented by a sequence of symbols where each symbol
belongs to a given dictionary, moreover we will look at the context of each
symbol in a given sequence, i.e. the p symbols before and the q symbols after
that symbol. Additionally, in the case of LINER we will extend a context by
using additional features, like part-of-speech tags for example. In that case we
talk about an extended context. In the case of LINER a symbol can be a word,
a proper name or a punctuation mark etc., the dictionary contains all words of
the language in consideration together with proper names, punctuation marks
etc. A sequence of symbols is a sentence and the context of a given word are
the p words in front and the q words after the given word. For PSSP a symbol
represents an amino acid, the dictionary is the set of all existing amino acids, a
sequence is (part of) a protein formed by a succession of amino acids and the
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context of a given amino acid are the p acids in front and the q acids after the
given acid.

Because of its great success the BOW approach quickly became very popular.
Although the approach was designed to do classification of large texts, variants
have been described to do classification of the symbols in a sequence in the way
described above. In this way however a lot of useful information can get lost
because a standard kernel is often not specifically designed to capture the simi-
larity between contexts. Therefore it can be worthwhile to look for metrics that
operate directly on such contexts. It is our purpose to show that an alternative
approach to SVM learning for applications where the data can be represented
by sequences of (extended) contexts can be used instead of the BOW approach.

We start this work with a short description of SVM theory from a kernel view-
point, as kernel functions will be the main topic of this paper. Next we describe
an alternative approach to SVM learning with symbolic data that gives a much
more intuitive basis with respect to the similarity of the input examples. We start
by describing a variant of a simple pseudo-inner product that has been introduced
in [3] and is based on a very simple metric defined on contexts. We will show that
this inner product is in fact equivalent to the standard inner product applied to
the orthonormal representation of these contexts. But, in the same time we will
show that the discrete approachbased on the similarity between contexts is a much
more intuitive viewpoint to incorporate special purpose, complex similarity mea-
sures into the learning process. Two inner products, with increasingly complex
similarity measures will be considered and for both cases it will be shown that
they satisfy the necessary conditions to be used in a kernel function. One such
inner product will be based on a weighted version of the simple metric and the
second one will be based on the entries of a similarity matrix.

Finally, a number of the described kernel functions will be applied to the
problem of PSSP, compared with each other and a number of standard ker-
nels. From the results it will become clear that using special purpose similarity
information, in the way proposed in this paper, has a positive effect on the
classification results.

2 Support Vector Machines

The following sections give a brief overview of the theory of SVMs together with a
discussion of different classes of kernel functions. Next, because we want to make
kernels based on specific (dis)similarity information about the input examples,
we will show the importance of and the relation between similarity measures,
distances and kernels. Subsequently, all introduced concepts will be used in Sec-
tion (4) to construct kernels based on the (dis)similarity between contexts. Note
that, for simplicity we will only consider the case of binary classification. For a
more comprehensive description of SVMs we refer to [4,5].

2.1 Maximum-Margin Separation

Consider an input space X with input vectors x, a target space Y = {1,−1}
and a training set Tr = {(x1, y1), ..., (xN , yN)} with xi ∈ X and yi ∈ Y .
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In SVM classification, separation of the two classes Y = {1,−1} is done by
means of the maximum margin hyperplane, i.e. the hyperplane that maximizes
the distance to the closest data points and guarantees the best generalization on
new, unseen examples. Let us consider two hyperplanes :

〈w,xi〉+ b ≥ 1 if (yi = 1) (1)

〈w,xi〉+ b ≤ −1 if (yi = −1) (2)

The distance from the hyperplane to a point xi can be written as :

d(w, b;xi) =
|〈w,xi〉+ b|

‖w‖

Consequently the margin between two hyperplanes can be written as :

min xi;yi=1d(w, b;xi) + min xi;yi=−1d(w, b;xi)

To maximize this margin we have to minimize ‖w‖. This comes down to solving a
quadratic optimization problem with linear constraints. Notice however that we
assumed that the data in Tr are perfectly linear separable. In practice however
this will often not be the case. Therefore we employ the so called soft-margin
method in contrast to the hard-margin method. Omitting further details we can
rewrite the soft-margin optimization problem by stating the hyperplane in its
dual form, i.e. find the Lagrange multipliers αi ≥ 0 (i = 1, ..., N) so that :

Maximize: L(α1, · · · , αN ) =
∑N

i=1 αi − 1
2

∑N
i,j=1 αiαjyiyj 〈xi,xj〉 (3)

Subject to:
∑N

i=1 αiyi = 0
0 ≤ αi ≤ C

Considering the dual problem above we can now write the maximum margin
hyperplane as a linear combination of support vectors. By definition the vectors
xi corresponding with non-zero αi are called the support vectors SV and this
set consists of those data points that lie closest to the hyperplane and thus are
the most difficult to classify. In order to classify a new point xnew , one has to
determine the sign of ∑

xi∈SV

αiyi 〈xi,xnew〉+ b (4)

If this sign is positive xnew belongs to class 1, if negative to class -1, if zero xnew

lies on the decision boundary. Note that we have restricted the summation to
the set SV of support vectors because the other αi are zero anyway.

2.2 The Kernel Trick

In practice it will often be the case that the data can not be separated linearly by
means of a hyperplane. One of the basic ideas behind SVMs is to have a mapping
φ from the original input space X into a high-dimensional feature space F that
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is a Hilbert space, i.e. a complete vector space provided with an inner product.
Separation of the transformed feature vectors φ(xi) in F is done linearly, i.e.
by a hyperplane. The decision boundary which is linear in F corresponds to a
non-linear decision boundary in X .

However, transforming the vectors in the training set Tr into such a higher-
dimensional space incurs computational problems. The high dimensionality of
F makes it very expensive both in terms of memory and time to represent the
feature vectors φ(xi) corresponding to the training vectors xi. Moreover, it might
be very hard to find the transformation φ that separates linearly the transformed
data.

Notice that the objective function L(α1, ..., αN ) in (3) and the definition of
the hyperplane in (4) depend only on inner products between vectors. If there
would exist a function that allowed us to directly calculate the inner products
between the transformed feature vectors φ(xi) from the xi without actually hav-
ing to consider φ(xi), we can reduce the computational complexity considerably.
It turns out that such a function exists, it is called a kernel function and it is
defined as follows [5]:

Definition 1. A kernel is a symmetric function K : X ×X → R so that for all
xi and xj in X, K(xi,xj) = 〈φ(xi), φ(xj)〉 where φ is a (non-linear) mapping
from the input space X into the Hilbert space F provided with the inner product
〈., .〉.

2.3 Different Classes of Kernel Functions

The selection of an appropriate kernel K is the most important design decision
in SVMs since it implicitly defines the feature space F and the map φ. A SVM
will work correctly even if we don’t know the exact form of the features that are
used in F . Moreover, the kernel expresses prior knowledge about the patterns
being modeled, encoded as a similarity measure between two input vectors.

But not all symmetric functions over X×X are kernels that can be used in a
SVM. Since a kernel K is related to an inner product, cfr. the definition above,
it has to satisfy some conditions that arise naturally from the definition of an
inner product and are given by Mercer’s theorem: the kernel function has to be
positive definite (PD). Therefore, we have the following definition:

Definition 2. A symmetric function K : X × X → R which for all m ∈ N,
xi, xi ∈ X gives rise to a positive semi-definite (PSD) kernel matrix, i.e. for
which for all ci ∈ R we have:

m∑
i,j=1

cicjKij ≥ 0, where Kij = K(xi,xj) (5)

is called a positive definite (PD) kernel.

When K is not PD it will be unclear what kind of classification problems we are
solving and convexity of the optimization problem can no longer be guaranteed.
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In practice, the requirement of a kernel to be PD turns out to be a very strict
assumption. Many special purpose or sophisticated similarity and dissimilarity
measures that one would like to incorporate in the learning process do not satisfy
the requirement of being PD.

One particular class of non-PD kernels is the class of conditionally positive
definite (CPD) kernels. For this type of kernel functions it has been shown that
they can be used as generalized distances in the feature space [1]. Section (2.4)
will describe one such kernel function known as the negative distance kernel. For
now we start by giving a definition of the class of CPD kernels:

Definition 3. A symmetric function K : X ×X → R which satisfies (5) for all
m ∈ N, xi ∈ X and for all ci ∈ R with the extra condition:

m∑
i=1

ci = 0, (6)

is called a conditionally positive definite (CPD) kernel.

2.4 Kernel Functions and Similarity Measures

Next, different relations between kernel functions and similarity measures are
described. It will be shown that there is a very close relationship between kernel
functions, similarity measures and metrics. We start with the trivial case of PD
kernels and their relation to the concept of similarity and we show how a distance
can be derived from a PD kernel. Next, it is shown that CPD kernels can be
used to define distances in the feature space.

Notice that in SVMs similarity between examples is measured by inner prod-
ucts, through the calculation of PD kernels. We start by giving an interesting
property that relates a PD kernel function K : X ×X → R to a metric d on the
input space X :

Distance derived from a PD kernel: Let K be a PD kernel over X × X,
then d defined as :

d(x,x′) = ‖φ(x)− φ(x′)‖
=
√

K(x,x)− 2K(x,x′) + K(x′,x′) (7)

is a distance on X and consequentially (X, d) is a metric space.

Although PD kernels define inner products, they can also use a form of
dissimilarity in their calculation. An example of this is the radial basis kernel
function Krb : X×X → R that explicitly makes use of the distance between two
points in the input space X to calculate inner products in the feature space F :

Krb(x,x′) = exp
(
−γ ‖x− x′‖2

)
(8)
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In general ‖x− x′‖ can be substituted by any metric that calculates the distance
between x and x′, the kernel that is so defined is called a generalized radial basis
function [6]. In this way one can plug in a special purpose distance function for
the application in consideration.

Next, let us focus on the class of CPD kernels. The following will state only
those results that are needed to justify the approach in this work, for more details
we refer to [1] and [7]. We start by considering the connection between PD and
CPD kernels:

Proposition 1. Let x0 ∈ X, and let K be a symmetric kernel on X×X. Then
K̃(x,x′) = K(x,x′)−K(x,x0) + K(x0,x0) is positive definite if and only if K
is conditionally positive definite.

Proof. For the proof of this proposition we refer to [1].

Next, based on Equation (1) we can construct a feature map for K. Because
K̃ is PD we can employ the Hilbert space representation φ : X → F , with
〈φ(x), φ(x′)〉 = K̃(φ(x), φ(x′)):

‖φ(x) − φ(x′)‖2 = K̃(x,x) + K̃(x′,x′)− 2K̃(x,x′)

Substituting (1) yields,

‖φ(x) − φ(x′)‖2 = −K(x,x′) +
1
2

(K(x,x) + K(x′,x′)) (9)

Now we have the following result that relates a CPD to a metric on X , compa-
rable to the result in (7):

Distance Derived from a CPD Kernel: Let K be a CPD kernel over X×X,
satisfying K(x,x) = 0 for all x ∈ X, then d defined as :

d(x,x′) = ‖φ(x) − φ(x′)‖
=
√
−K(x,x′) (10)

is a distance on X and consequentially (X, d) is a metric space.

Notice that the second term of (9) is dropped in (10) because we assumed that
K(x,x) = 0. In the case that this assumption would not be true, (10) should be
adapted accordingly and d would no longer be a metric but a semi-metric. One
CPD kernel function that we will consider here is the negative distance (ND)
kernel [5]:

KND(x,x′) = −‖x− x′‖β with 0 < β ≤ 2 (11)

3 Implications of Working with Sequences of Symbols

In the previous we always assumed that the vectors x and x′ were vectors be-
longing to a real vector space X . In this section however we will consider data
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that are sequences of symbols and the context of each symbol in such a sequence,
i.e. a fixed number of symbols before and after that symbol in the sequence, see
Section (3.1).

One of the most obvious implications of working with sequences is that we
will have to define an ”inner product” between contexts. One popular approach
to this problem is to transform sequences to a real representation and then
applying the standard SVM and kernel functions, this is explained in Section
(3.2). Finally, in Section (3.3) we give an alternative approach to SVM learning
with sequences. We will argue that especially for contexts that result from sliding
a window over a sequence of symbols, the use of special purpose, distance based
kernel functions working on the contexts themselves should be preferred over the
use of standard kernel functions working on the transformed real data.

3.1 Contexts

Consider a collection S of sequences s. Every sequence s consists of an ordered
succession of symbols, i.e. s =

(
sk0 . . . sk|s|−1

)
with |s| the length of the sequence

and with ski ∈ D a set (henceforth called a dictionary) of symbols indexed
according to ki ∈ {1, . . . , n} with |D| = n the cardinality of the dictionary D
and i = 0, . . . , |s| − 1. Contexts are now formed by sliding a window over the
sequences s ∈ S, i.e. for every sequence s a set of instances I (s) containing |s|
contexts with a window size r = (p + q + 1) is constructed as follows I (s) =
{s [(i− p) : (i + q)] | 0 ≤ i ≤ |s| − 1} with p the size of the left context, q the
size of the right context and with s [i : j] =

(
ski . . . skj

)
the subsequence of

symbols from index i to j in the sequence s. The total set of contexts is now
formed by taking the union of all the I (s), i.e. I (S) =

⋃
S
I (s). Notice that for

subsequences with indices i < 0 and j > |s| − 1 corresponding positions in the
sequence are filled with the special symbol ‘− ‘ which can be considered as the
empty symbol. In the following we will give an example of this in the setting of
language independent named entity recognition (LINER).

Example 1. In LINER it is the purpose to distinguish between different types of
named entities. Named entities are phrases that contain the names of persons,
organizations, locations, times and quantities. Consider the following sentence:
[B-PER Wolff] , currently a journalist in [B-LOC Argentina] , played with [B-PER
Del I-PER Bosque] in the final years of the seventies in [B-ORG Real I-ORG Madrid].
Here we recognize 5 types of named entities (B-PER, I-PER, B-LOC, B-ORG
and I-ORG), all other words are tagged as O (outside named entity). Instances
for such classification problems are often composed by the word for which we
want to determine the entity class and a context of a number of words before
and after the word itself. Furthermore, sometimes additional features, like the
position of a word in a sentence, are used, but we will not consider these features
here. For simplicity we will use a context of 2 words on the left and the right of
the focus word (i.e. a window size of 5), in our setting we now have:

1. The dictionary D is the set of all English words and names of persons,
organizations etc.
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2. The set of sequences S is a set of sentences, i.e. we consider a sentence as
being a sequence with the words as components. Notice that in this example
there is only one sequence in S as there is only one sentence.

3. For the above sentence we have following sequence s = Wolff , currently a
journalist in Argentina , played with Del Bosque in the final years of the seventies
in Real Madrid, with |s| = 23.

Next, the set of contexts I (S) is defined as:⋃
S

I (s) = {s [(i− 2) : (i + 2)] | 0 ≤ i ≤ 22 }

= {s [−2 : 2] , s [−1 : 3] , s [0 : 4] , . . . , s [18 : 22] , s [19 : 23] , s [20 : 24]}
= {(− − Wolff , currently) , (− Wolff , currently a) , (Wolff ,

currently a journalist) , . . . , . . . , (seventies in Real Madrid) ,
(in Real Madrid−) , (Real Madrid− −)}

Notice that the ‘− ‘ represent values that are not present because they fall before
the beginning or after the end of a sequence.

Next, it is illustrated how the same approach can be applied to protein sec-
ondary structure prediction (PSSP).

Example 2. Proteins are sequences of amino acids joined together by peptide
bonds. There are 20 different amino acids that make up all proteins on earth.
Amino acids are represented by a one letter alphabet, in total 20 letters, one
for every different amino acid that exists. The order of the amino acids in a
sequence is known as its primary structure. Secondary structure is the term
protein chemists give to the arrangement of the peptide backbone in space. The
backbone can form regular, repeating structures held together due to interactions
between chemical groups on the amino acids. These repeating structures are
called secondary structure. In PSSP it is the purpose to decide for each amino
acid of the protein whether it belongs to an α-helix, a β-sheet or a coil. Contexts
are formed in a way similar to the LINER problem, i.e. we take a central amino
acid and a context of a number of amino acids in front and after the acid for
which we want to determine the secondary structure, this time we will consider
a context of 5 acids both to the left and the right of the focus acid:

1. The dictionary D with |D| = 20, is the set of all amino acids, i.e. D =
{A,C,D,E, F, G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }

2. The set of sequences S is the set of all amino acid sequences corresponding
to existing proteins or multiple alignments of such proteins [8].

Next consider the following protein (taken from the CB513 data set, see Section
(5.2)) A Y V I N D S C I A C G A C K P E C P V N I I Q G S I Y A I D A D S
C I D C G S C A S V C P V G A P N P E D ∈ S, from this sequence we derive
following set of contexts I (S):
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⋃
S

I (s) = {s [(i− 5) : (i + 5)] | 0 ≤ i ≤ 53}

= {s [−5 : 5] , s [−4 : 6] , s [−3 : 7] , . . . , s [51 : 56] , s [52 : 57] , s [53 : 58]}
= {(−,−,−,−,−, A, Y, V, I,N,D) , (−,−,−,−, A, Y, V, I,N,D, S) ,

(−,−,−, A, Y, V, I,N,D, S, C), . . . , (A, Y, V, I,N,D, S,C, I, A,C) ,

(Y, V, I,N,D, S,C, I, A,C,G), . . . , (G,A, P,N, P,E,D,−,−,−,−) ,

(A,P,N, P,E,D,−,−,−,−,−)}

Finally, in many cases one would like to use additional features next to the
symbols in the sequences themselves. These additional features are defined in
function of the symbols in the sequences and possibly some other information,
like the position of the symbol in the sequence for example. The possible values
the new features can adopt are added to the dictionary D and indexed accord-
ingly. The new features themselves can be added everywhere in the context as
long as they are put on corresponding positions in all contexts. The most simple
way is to just add them at the end of the contexts as they are formed by sliding
the window over the original sequences. Consider the following example:

Example 3. In the case of LINER we distinguish 3 types of additional features:

1. Part-of-speech (POS) tags : POS tags are defined for every symbol in the
original dictionary D and describe what type of word we are considering, e.g.
V(erb), N(oun), etc. This feature is defined by the function fPOS : D → P
that maps every symbol from D to some POS tag p from the set P of all
possible POS tags. This feature is defined for every symbol in the original
context I(s).

2. Orthographic feature: Like information about the capitalization of a word,
digits or hyphens in a word, etc. This feature is defined by the function
fORT : D → O. This feature is also defined for every symbol in the original
context I(s).

3. Position feature: This feature is binary and tells something about the posi-
tion of the focus word in the original sequence, i.e. whether the focus word
is the first word in the sentence or not. This feature is defined not only in
function of the set D but also in function of the position of the symbol in
the original sequence s, i.e. fwp : D × {1 . . . |s| − 1} → {fw, ow} with fw
referring to first word and ow referring to other word.

The total dictionary Dtot is now formed by D
⋃

P
⋃

O
⋃
{fw, ow} and an ex-

tended context based on a sequence s is made out of 4 blocks as follows:

(ski , . . . , skj , f
i
POS

, . . . , f j
POS

, f i
ORT

, . . . , f j
ORT

, f
wp

)

From now on we will consider D to be the dictionary containing all symbols
including the values of the additional features. Moreover, note that for the fol-
lowing it does not matter whether we are working with contexts or extended
contexts. Therefore, from now on we will not distinguish between contexts and
extended contexts.
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Next, different ways to represent contexts, in a way suitable for a SVM to
work with them, will be described. For this purpose we will show different ways
to represent the contexts as vectors x,x′ ∈ X .

3.2 Bag-of-Words and Orthonormal Vectors

The bag-of-words (BOW) approach involves a transformation of the discrete
instances to a real vector representation [2] and subsequently applying the stan-
dard kernel functions to the resulting real vectors. In this case we don’t slide
a window over a sequence of symbolic data with the purpose to assign every
symbol of the sequence to a class (like in LINER). Here it is more the purpose
to assign complete texts to different classes, in this context a complete text with
(possibly many) different sentences or sequences is considered as one instance.
In the bag-of-words vector representation these instances are described by a vec-
tor in which each component of the vector represents the value of one feature
of that instance. Each symbol that occurs in the data is treated as one such
feature. The value of a feature for a particular example can be, for example, the
frequency of occurrence of that symbol or it can take a binary form taking the
value of 1 if the symbol occurs in the instance and the value of 0 if it doesn’t
occur in the instance [2]. Note that this approach is based on the assumption
that the order in which the symbols occur does not play an important role in the
determination of the classification problem. Also note that the dimensionality of
the input vectors becomes very high in this way because we have a vector com-
ponent for every distinct symbol occurring in the data. Moreover, most of the
components will take a value of 0 since only a few symbols of the total number
of symbols of the data will be present in one example. However, this does not
impose any problems for the SVM as it has been proved that it is capable of
learning with very high dimensional input data [2]. To handle the sparseness of
the input vectors many SVM implementations have been specifically designed
so that only the non-zero components of the input vectors should be represented
in the data. In the past the BOW approach has been successfully applied to the
classification of large texts. The approach was very successful for this type of
tasks because the word order in a text does not seem to be important for the
classification of the text as features like term frequency give much more relevant
information. Moreover, for large texts, working directly with the strings could
cause computational problems [9,2].

For other problems however the order in which the symbols appear does play
an important role. One such an example is LINER, because here the word order
in the sentence plays an important role in the determination of the entity class.
Also, for PSSP the order of the amino acids is very important. It is obvious that
for these problems the BOW will not work. For these problems it is necessary to
include information about the position in the transformation to the real format.
This is done by encoding each symbol from the set D as an orthonormal vector.
We illustrate this by the following example:

Example 4. For the PSSP problem of Example 2 every amino acid is represented
by a 20-dimensional orthonormal vector with only 1 non-zero component, i.e.
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the component corresponding to the index of the symbol it represents in the
dictionary D. Note that the empty symbol ‘ − ‘ is represented by the zero-
vector. If we assume that the symbols (or amino acids in this example) are
indexed alphabetically in D then we have following orthonormal vectors:

−= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
A= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
C= (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
Y= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

In this context vectors x,x′ ∈ X with X ⊆ Rl the space of orthonormal vectors
of dimensionality l = r ∗ n, where r is the context size and n is the size of
the dictionary, represent complete contexts formed by concatenating the above
vectors according to the succession of the different amino acids in the order as
they appear in the sequence.

Because the position of the symbols in the sequence can now be encoded
into real vectors, the method also becomes available to problems that depend
on the order of the symbols in the sequence. In general the data is recorded to
the orthonormal format and represented by a sparse vector format, i.e. 0-valued
components are not represented, and subsequently standard kernel functions like
the radial basis or polynomial kernel functions are applied. This approach has
been successful for different types of applications, like LINER, PSSP and other
problems in both natural language and biology that rely on sliding a window
over a sequence of symbols as explained above [10,11,12,13,14].

Although the method has been successful for several applications it suffers
from a number of drawbacks:

1. It is only possible to see whether two symbols occur at the same position in
two contexts, it is not possible to measure a degree of similarity between the
symbols.

2. By using standard kernel functions useful information like metrics defined on
the contexts can get lost. In Section (2.4) we saw the close relation between
and importance of similarity measures and kernel functions. These similar-
ity measures are defined on the input data, i.e. on strings, sequences and
contexts and not on orthonormal vectors.

3. An orthonormal vector does not give much information about the context it
represents, i.e. it is very hard to see from which context it has been derived.

For these reasons we believe that, for applications with symbolic data and with
contexts that are formed by sliding a window over a sequence of symbols it is
better to work directly with the contexts themselves.

3.3 Contexts

Contexts x,x′ ∈ X are vectors with X =
⋃

S
I(s) ⊆ Sl the space of contexts of

size l. The vectors x,x′ represent contexts as discussed in Section (3.1) and as
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illustrated in examples 1 and (2) and take the exact same form as the contexts
themselves. In this light Sl can be considered as the space of all contexts formed
by sliding a window over all possible sequences formed by the symbols in D. From
all these sequences we consider only those that are of interest to us (i.e. correct
Dutch sentences or existing proteins). Note that in this way the components of
the vectors x and x′ are symbols from the dictionary D. Such contexts have a
number of advantages that are in direct contrast with the disadvantages of the
orthonormal vectors:

1. As we are working with sequences of symbols it is possible to define a degree
of similarity between the different symbols. In this context we can distinguish
2 types of degrees of similarity. In the first type the form of the symbols
themselves determines the degree of similarity e.g. we could say that book
is more similar to brook then it is similar to blood because they have more
characters in common. An example of this is the classification of dialects
making use of the Levenshtein distance [15,16]. In the second type it is more
a degree of similarity where we say that one symbol is more similar to another
based on some form of domain knowledge and not based on the form (i.e. the
number of characters they have or do not have in common) of the symbols.
In PSSP for example we say that some pairs of amino acids are more similar
to each other then other pairs based on evolutionary information represented
by a matrix, for an example see Section (4.3).

2. Many similarity measures are defined on the contexts themselves, incorpo-
rating these measures into the kernel function often has a positive influence
on the classification results. As an example of this consider the distance
functions in [17] defined on contexts and used for memory-based learning in
natural language problems. Moreover in [3,18] we used these distance func-
tions as a basis to design kernel functions to do SVM learning in natural
language problems.

3. A context vector is easy to interpret as it is directly observable what context
it represents.

However, working with symbolic data also involves a number of issues. First
of all, the data has to be mapped from a discrete input space X ⊆ S to a real
Hilbert space F . Of course by making use of the kernel trick, this mapping φ can
stay implicit. Nevertheless, there still remains the issue of finding a valid kernel
formulation between contexts that captures as much similarity or dissimilarity
information as possible.

Next, notice that working with contexts incurs some computational problems
because the complexity of comparing 2 strings is proportional to the length of
the longest string in the comparison. Remember that one of the most important
requirements for a kernel is for it to be computationally efficient as it has to be
calculated for all pairs of vectors in the trainingset. As the kernel functions we
present here rely on the comparison of symbols and that we only use a degree of
similarity of the second type it is possible to represent the symbols not by strings
and characters but by their index ki in the dictionary D. In this way we only have
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to compare integers and not strings. For PSSP this won’t make a big difference
as all strings are single characters of length 1, for LINER however the gain will
be considerable. Additionally, some of the kernels that will be introduced in the
next section are calculated through a matrix containing entries for every pair of
symbols in the set D, by representing the symbols by their index in D we can
access such a matrix in O(1).

In the next section we introduce a natural framework for designing kernel
functions for contexts based on metrics defined on the contexts themselves.

4 Appropriate Kernel Functions for Contexts

In this section we will always start from a (dis)similarity measure defined on the
input examples and derive simple, linear kernels for that measure. In analogy
with the real case these linear kernels take the form of simple inner products
between the input vectors. Subsequently these inner products will be used as a
basis to define more complex kernels and distances in the feature space F .

Section (4.1) starts with the description of a simple inner product based on a
simple distance function defined on contexts. For this inner product we will show
that it is equivalent with the standard inner product between the correspond-
ing orthonormal vectors, but in the same time we will show that the context
approach making use of (dis)similarity measures defined on the contexts them-
selves is much more intuitive. For this purpose we will consider two extensions
of the simple inner product by incorporating domain knowledge in the learning
process. Considering increasingly complex (dis)similarity measures it will be-
come clear that reasoning about these measures at the level of the contexts and
subsequently deriving kernel functions is much more intuitive than working with
orthonormal vectors.

Section (4.2) describes an extension based on a weighted version of the sim-
ple distance function from Section (4.1) and Section (4.3) shows how the same
method can be applied for problems where a metric is not directly at one’s dis-
posal, more specifically we will look at problems where similarity information is
available under the form of a matrix. Finally Section (4.4) gives an overview of
how to use the different simple inner products to define distances in the feature
space F and more complex kernels suited for SVM learning.

Notice that from now on we will be working with vectors x,x′ ∈ X l with X l ⊆
S

l and vectors x̃, x̃′ ∈ X̃n∗l ⊆ R
n∗l with l the length of the contexts and n the

cardinality of D as before. The components are denoted by xi, x
′
i ∈ D and x̃i, x̃

′
i ∈

R respectively. In practice however the contexts will be represented by the index
of the symbols in D. Finally, 〈 . . 〉 will be used to denote the standard inner
product in real Euclidean space and 〈 . | . 〉 will be used to denote the pseudo-
inner product between contexts. We call it pseudo because, although it will
satisfy all necessary conditions of an inner product, it is strictly mathematically
spoken not an inner product as it is defined on strings.

4.1 A Simple Overlap Kernel

The most basic metric for contexts is the Simple Overlap Metric (SOM) [19,3]:
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Definition 4. Let X l ⊆ Sl be a discrete space with l-dimensional contexts x and
x′ with components xi and x′

i ∈ D with |D| = n as before. Then the distance
dSOM : X l ×X l → R

+ is defined as

dSOM : X l ×X l → R
+ : dSOM (x,x′) =

l∑
i=1

δ(xi, x
′
i) (12)

with δ(xi, x
′
i) = 1− δxi(x

′
i) and δ : D ×D → {1, 0} :

δxi(x
′
i) = 1 if xi = x′

i = −, else 0 (13)

with l the context size and ‘− ‘ referring to the empty token.

In previous work we constructed a kernel function by defining a mapping φSOM :
X l → F based on the distance function from Equation (12) and working out the
inner product in F . Moreover by making use of Equation (7) we showed that
the distance ‖φSOM (x)− φSOM (x′)‖ in the feature space F (calculated through
the newly derived kernel function) is very closely related to dSOM [3]. Next we
will give a more general form of this kernel function and a more formal proof of
its positive definiteness.

Proposition 2. Let X l ⊆ Sl be a discrete space with l-dimensional contexts x
and x′, with components xi and x′

i ∈ D with |D| = n as before. Let X̃n∗l ⊆ Rn∗l

be a binary space with n ∗ l-dimensional vectors x̃ and x̃′ the corresponding
orthonormal vector representation of the vectors x and x′. Then the function
〈 . | . 〉

SOM
: X l × X l → R defined as 〈x|x′〉

SOM
=
∑l

i=1 δxi(x′
i) with δ as

defined in (13) is positive definite (PD) and 〈x|x′〉
SOM

= 〈x̃, x̃′〉.

Proof. We will prove that 〈x|x′〉
SOM

= 〈x̃, x̃′〉, the positive definiteness of the
function 〈 . | . 〉

SOM
will follow automatically. We start by noting that the vectors

x̃ and x̃′ are composed out of l orthonormal vectors. We will denote this as
follows: x̃ = ([x̃]1, . . . [x̃]l) with [x̃]i the orthonormal vector corresponding with
symbol xi from the vector x. For l = 1 and ∀x,x′ ∈ X1 we have the following:

〈x|x′〉
SOM

= δx1(x
′
1) =

{
1 if x1 = x′

1
0 if x1 = x′

1

For the discrete case this follows directly from the definition of the kernel function
and the distance function it is based on, see Equation (13). For the orthonormal
case it is sufficient to note that for the inner products between all orthonormal
vectors [x̃], [x̃′] it holds that:

〈
[x̃], [x̃′]

〉
=
{

1 if [x̃] = [x̃′]
0 if [x̃] = [x̃′]

(14)

Next, because l = 1 we need only one orthonormal vector to construct complete
instances, i.e. x̃ = [x̃]1 and x̃′ = [x̃′]1 and thus:

〈x̃, x̃′〉 =
l=1∑
i=1

〈
[x̃]i, [x̃′]i

〉
(15)
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=
〈
[x̃]1, [x̃′]1

〉
= δx1(x

′
1)

Where the last step is justified by Equation (14) and by the assumption that
[x̃]i is the orthonormal vector corresponding to the token xi.
Now assume that the proposition holds for l = m. Next, we will prove that the
proposition holds for l = m+1 and by induction we will be able to conclude that
it holds for all l. We start by showing that the calculation of the kernel values
for l = m + 1 can be decomposed in terms of l = m:

〈x|x′〉
SOM

=
l=m∑
i=1

δxi(x
′
i) +

{
1 if xm+1 = x′

m+1
0 if xm+1 = x′

m+1
(16)

Now it can be readily seen that the the proposition holds for l = m + 1 because
we now by assumption that for the left part of the RHS of Equation (16) it
holds that

∑l=m
i=1 δxi(x′

i) =
∑l=m

i=1

〈
[x̃]i, [x̃′]i

〉
and for the right part of the RHS

making use of Equations (14) and (15) xm+1 = x′
m+1 and xm+1 = x′

m+1 implies〈
[x̃]m+1, [x̃′]m+1

〉
= 1 and 0 respectively. � 

Although we have shown that 〈x|x′〉
SOM

= 〈x̃, x̃′〉 we will argue that it is better
to work with contexts in stead of orthonormal vectors because this gives a much
more intuitive basis to incorporate extra domain knowledge into the learning
algorithm under the form of special purpose distance functions. We start with a
simple extension of 〈 . | . 〉

SOM
by introducing weights into dSOM .

4.2 A Simple Weighted Overlap Kernel

Consider the SOM from Equation (12) and suppose we add weights wi as follows:

dWOM : X l ×X l → R
+ : dWOM (x,x′) =

l∑
i=1

wiδ(xi, x
′
i) (17)

with δ as before and ∀i : wi ≥ 0.

Next we can define an inner product or simple kernel based on the distance
function from Equation (17) in the same way as before.

Proposition 3. Let X l ⊆ S
l be a discrete space with l-dimensional contexts x

and x′, with components xi and x′
i ∈ D with |D| = n as before. Then the function

〈 . | . 〉
SOM

: X l × X l → R defined as 〈x|x′〉
W OM

=
∑l

i=1 wiδxi(x′
i) with δ as

defined in (13) is a positive definite (PD) kernel function.

Proof. The proof is very straightforward, i.e. in a similar way as for Proposition
2 it can be proved that 〈 . | . 〉

WOM
corresponds to the inner product between

orthonormal vectors that are not binary but where the non-zero component of
the orthonormal vector corresponding to token xi takes the value

√
wi. The

details are left to the reader. � 
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4.3 A Simple Similarity Matrix Based Kernel

This section discusses the case where there is a degree of similarity between the
different symbols in D. More precisely, the case where such similarity information
is organized as a matrix will be discussed. We start by giving the definition of a
similarity matrix for a dictionary D.

Definition 5. Given a dictionary D a similarity matrix S is the n × n matrix
with two entries for every pair of symbols in D, i.e. sjk, skj ∈ R for j, k ∈
{1, 2, . . . , n} the indices of the symbols in D. Large values for the entries indicate
a high degree of similarity between the corresponding symbols in D and small
values indicate a low degree of similarity between the corresponding symbols in
D.

Many examples of similarity matrices can be found in the field of biology, i.e. for
nucleotide scoring in DNA sequences, protein scoring for amino acid sequences or
PSSP. Next, above similarity measure, that is defined on contexts and symbols
will be used to define a simple pseudo-inner product. It will be shown how the
pseudo-inner product is calculated through the entries of a similarity matrix S
and what properties S should satisfy in order for the inner product to make
sense.

Definition 6. Let X l ⊆ Sl be a discrete space with l-dimensional contexts x
and x′ with components xi and x′

i ∈ D with |D| = n as before and let ji and
ki ∈ {1, 2, . . . , n} be the indices of the components xi and x′

i ∈ D such that
S (ji, ki) = sjk, with S a n× n similarity matrix as defined in Definition 5 with
the additional properties so that for all j, k:

sjk = skj

sjj ≥ 0

|sjk|2 ≤ sjjskk

Then the similarity matrix based inner product : 〈 . | . 〉
MAT

: X l ×X l → R is
defined in the following way:

〈x|x′〉
MAT

=
l∑

i=1

S (ji, ki) (18)

Nevertheless, even if a matrix S satisfies the above properties the pseudo-inner
product is still not sure to be PD. For the pseudo-inner product to be PD and
hence usable as a kernel function in a SVM the similarity matrix S should also
be PSD and positive valued. This is expressed in the following proposition.

Proposition 4. Let X l ⊆ Sl be a discrete space with l-dimensional contexts x
and x′ with components xi and x′

i ∈ D with |D| = n as before, with ji, ki ∈
{1, 2, . . . , n} and with S as in Definition 6. Then the function 〈 . | . 〉

MAT
:

X l × X l → R defined as in Equation 18 is PD if and only if S is PSD and
sjk ≥ 0 for all j, k.



Appropriate Kernel Functions for Support Vector Machine Learning 273

Proof. We start with the binary, 1-dimensional case. Assume that D contains
only 2 symbols, i.e. n = 2, also assume that l = 1. We have to prove that, given
the input vectors xi and xj ∈ X1, the kernel matrix Kij = 〈xi,xj〉

MAT
is PSD.

For l = 1 we have a kernel matrix that takes the following form:

K1 =
(

s1,1 s1,2
s2,1 s2,2

)

K1 = S is a PSD matrix by requirement of the proposition and thus the propo-
sition is true for l = 1.

Now assume that the proposition holds for l = m. We will prove now that
the proposition holds for l = m+1 and by induction we will be able to conclude
that it holds for all l. We start by showing that Km+1 can be decomposed in
terms of Km as follows:

Km+1 =

⎛
⎝Km + (s1,1)m Km + (s1,2)m

Km + (s2,1)m Km + (s2,2)m

⎞
⎠ (19)

=

⎛
⎝Km Km

Km Km

⎞
⎠+

⎛
⎝ (s1,1)m (s1,2)m

(s2,1)m (s2,2)m

⎞
⎠ (20)

With the m ×m matrices (sjk)m containing the element sjk at every position
and Km+1 a 2m+1 × 2m+1 symmetric matrix. Given that Km is PSD the first
matrix in (20) is PSD as well. Next, given that ∀j, k : sjk ≥ 0 the matrices
(sjk)m are all PSD and hence the second matrix in (20) is PSD as well.

Next we will consider the more general case for a dictionary with a cardinality
c, i.e. D does not contain only 2 elements but c elements with c finite, i.e. n = c.
Start by considering K1 which is a c× c matrix with K1 = S like for the binary
case and thus the proposition is true for l = 1. Next, in the same way as before
we will show how the c(m+1) × c(m+1) matrix K(m+1) can be decomposed in
terms of Km:

Km+1 =

⎛
⎜⎜⎜⎝

Km + (s1,1)m Km + (s1,2)m . . . Km + (s1,c)m
Km + (s2,1)m Km + (s2,2)m . . . Km + (s2,c)m

... . . .
. . .

...
Km + (sc,1)m . . . Km + (sc,c)m

⎞
⎟⎟⎟⎠ (21)

=

⎛
⎜⎜⎜⎝

Km Km . . . Km
Km Km . . . Km

... . . .
. . .

...
Km . . . Km

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

(s1,1)m (s1,2)m . . . (s1,c)m
(s2,1)m (s2,2)m . . . (s2,c)m

... . . .
. . .

...
(sc,1)m . . . (sc,c)m

⎞
⎟⎟⎟⎠

Next in a similar way as before we can show that the first and second matrix
in (22) are PSD and as a result the matrix Km+1 is PSD as well. Hence by
induction, the proposition is true. � 



274 B. Vanschoenwinkel and B. Manderick

4.4 More Complex Kernels in Tree Flavors

In the following section tree kinds of kernels, based on the pseudo-inner products
of the previous sections, will be defined. The first type that will be discussed is
based on the polynomial kernel [5]. The second and the third type are formed
by defining distances making use of the pseudo-inner products of the previous
sections and Equations (8) and (11).

Start by considering the standard polynomial kernel in real space and applied
to orthonormal vectors x̃, x̃′ ∈ X̃n∗l ⊆ Rn∗l:

Kpoly(x̃, x̃′) = (〈x̃, x̃′〉+ c)d (22)

Now, we can make tree kernels for contexts x,x′ ∈ X l ⊆ S
l by substituting the

standard inner product in Equation (22) by one of the pseudo-inner products
from Propositions 2, 3 and 4 and by normalizing them as:

K̃(x,x′) =
K(x,x′)√

K(x,x)
√

K(x′,x′)

The resulting kernels are called Simple Overlap Kernel (SOK), Weighted Over-
lap Kernel (WOK) and Pseudo-Inner product Kernel (PIK) respectively. Note
that for our purposes we always choose c = 0 and d = 2. Also note that the
normalization step has a similar effect as the normalization of real inputs, but
that we cannot normalize the inputs here as they are discrete.

The second type of kernels are formed by defining distances by making use of
the pseudo-inner products from the previous sections and the fact that we can
define distances for these inner products in a similar way as in Equation (7), i.e.

‖x− x′‖ =
√
〈x|x〉 − 2 〈x|x′〉+ 〈x′|x′〉 (23)

with 〈 . | . 〉 one of the inner products from Propositions 2, 3 and 4. Next, by
substituting Equation (23) in Equation (8) the analogy is perfect. The result-
ing kernel functions are called Overlap Radial Basis Kernel (ORBK), Weighted
Radial Basis Kernel (WRBK) and Substitution Radial Basis Kernel (SRBK)
respectively.

Finally we also consider a type of conditionally positive definite kernels by
making use of the same distances as discussed above and substituting them into
the negative distance kernel from Equation (11). The resulting kernels for the
pseudo-inner products from Propositions 2, 3 and 4 are called the Negative Over-
lap Distance Kernel (NODK), Weighted Negative Distance Kernel (WNDK) and
Negative Substitution Distance Kernel (NSDK) respectively.

5 Experiments

In this section the kernel functions described in Section (4) will be tested on the
problem of PSSP as it is described in Example 2.

Notice that it is not our goal to do better than the state of the art methods
as we will do classification based only on the primary structure sequences and a
number of multiple sequence alignments. Our goal is to:
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1. Compare the orthonormal vector approach with the kernel functions SOK,
ORBK and NODK making use of contexts.

2. Compare the kernel functions SOK, ORBK and NODK with the kernel func-
tions PIK, SRBK and NSDK making use of the BLOSUM62 matrix (see
Section (5.1)).

Also note that we will not do experiments with the WOK, WRBK and WNDK as
we don’t have the space to do so, in previous work however [3,18] we already did
some experiments with similar kernels making use of information gain weights. At
the moment we are doing some more optimized experiments for LINER making
use of the weighted kernels, information gain ratio weights using grid search to
optimize all parameters of the learning process.

Finally note that we will not consider related methods like the mismatch,
spectrum and profile kernels [20,21] and the syllable and other string kernel
extensions of [22]. Although these methods use similar concepts they are designed
to do classification of the sequences themselves while our method aims to do
classification of the different symbols in the sequences. In that sense the named
methods calculate kernel values for the sequences while we calculate kernel values
for all symbols in the sequences.

5.1 Protein Secondary Structure Prediction

Overview. For a description of the problem of protein secondary structure
prediction (PSSP) we refer to Example 2. The current state of the art PSSP
methods achieve prediction accuracies around 77%. These methods do not only
make use of the similarity between the primary structure sequences but they also
make use of evolutionary information, profiles, chemical properties, etc. Moreover
the best performing methods combine different machine learning methods to
come to their good results. For a comprehensive overview of the state of the art
PSSP methods we refer to [23].

It is also important to notice that an important aspect in protein secondary
structure prediction is the use of multiple alignments. A multiple alignment is
a set of amino acid sequences in a rectangular arrangement, where each row
consists of one sequence padded by gaps, such that the columns highlight simi-
larity/conservation between positions. An optimal multiple alignment is one that
has optimal score, i.e. the highest degree of similarity, or the lowest cost (cal-
culated by the Levenshtein Distance for example). Multiple alignments contain
more information than the sequences alone, the additional information comes
from the fact that the pattern of substitutions in these alignments reflects the
family’s protein fold [8].

Similarity Between Amino Acid Sequences. The simplest way to measure
the similarity between two amino acid sequences is to simply count the number
of (mis)matching amino acids in both sequences making use of the SOM from
Equation (12). However, for amino acids this turns out to be a rather naive
approach. Some pairs of amino acids are more similar than other pairs. With
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similar we mean here that, for a given period of evolution, some amino acids are
more likely to mutate than other amino acids. The fact that some amino acids
can mutate in other amino acids with high probability and without changing the
function of the protein can be considered as a form of similarity. Therefore sim-
ilarity among amino acid sequences can be modeled with a substitution matrix.
The entries of a 20×20 substitution matrix describe, for a certain period of evo-
lution, the probabilities of amino acid mutations for all possible pairs of amino
acids. Two well-known families of substitution matrices are the family of Point
Accepted Mutation (PAM) [24] matrices and the family of BLOck SUbstitution
Matrix (BLOSUM) [25] matrices. These matrices are created based on sets of
well-known proteins. For a set of well-known proteins : i) align the sequences, ii)
count the mutations at each position, iii) for each substitution set the score to
the log-odd ratio :

log2

(
observed mutation rate

mutation rate expected by chance

)
We will not go in further detail about the construction of such matrices as this
would lead us to far. As an example we will consider one particular BLOSUM
matrix, called the BLOSUM62 matrix.

5.2 Data and Software

For the experiments we used the CB513 data set [26]. This dataset is compiled
by Cuff and Barton and consists of 513 proteins. The experiments are conducted
with LIBSVM [9] a Java/C++ library for SVM learning. An amino acid that
is to be predicted is represented by a context vector of 11 amino acids, 5 acids
before and 5 acids after the central amino acid that we wish to classify.

5.3 Results

We start by giving the 6-fold crossvalidation results of the SOK, ORBK and
NODK. The main goal here is to determine good values for the SVM cost pa-
rameter C and the kernel parameters γ and β. Table ?? gives these results. Notice
that k refers to the context size, which in our case is 11. Notice that we also in-
cluded results for the standard (normalized) polynomial and radial basis kernels
applied to the orthonormal representation of the contexts. Completely in the line
of the expectations they give identical results as the SOK and ORBK are calcu-
lated through the pseudo-inner product from Proposition 2 for which we proved
that it is equal to the standard inner product applied to the orthonormal vector
representation of the contexts. Next, in Table 2 we show results of the precision
and recall accuracies for every class of the SOK, ORBK and NODK. We train
probability estimates on a data set that includes 3 alignments for every protein,
resulting in a data set with 244021 instances. For the multi-class classification a
one-against-one method is used and to obtain the probability estimates for every
output LIBSVM internally performs crossvalidation and estimates pairwise prob-
abilities based on the training data and their decision values, for more details see
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Table 1

Kernel function Overall Accuracy
KSOK(C = 1, d = 2, c = 0) 62.61%
Kpoly(C = 1, d = 2, c = 0) 62.61%
KORBK(C = 1, γ = 1/k) 63.98%
Kradial(C = 1, γ = 1/k) 63.98%
KNODK(C = 0.3, β = 1) 63.06%

[9]. In the test set we included 35 alignments per protein, resulting in a test set
with 321532 instances. At prediction time we determined the class label for every
acid by performing majority weighting on the estimated probabilities for all the
alignments [27]. For the kernel and SVM parameters we used the values that
have been determined by the 6-fold crossvalidation. Note that the significance
intervals for the overall accuracies have been obtained with bootstrap resampling
making use of 500 samples [28]. Accuracies outside of these intervals are assumed
to be significantly different from the related accuracy (p < 0.05). Also note that
the recall for β-sheets is very low, this is because β sheets are governed by long
range interactions that can not be captured by our kernel functions.

Next we will make use of a similarity matrix in the way described in Section
(4.3) to do PSSP. The matrix we will be using is the BLOSUM62 matrix (see
Section (5.1) and [25]). First of all it is important to notice that the BLOSUM62
matrix does satisfy the conditions of Definition 6 but it does not satisfy the
conditions of Proposition 4, i.e. it is not PSD and not positive valued. Therefore
we perform a sort of normalization:

B̃62 =
B62 −min(B62)

max(B62)−min(B62)

with the functions min and max giving the smallest and largest elements of
the matrix. After performing this operation, the matrix contains all elements
between 0 and 1. By doing so, the matrix becomes almost PSD, i.e. it has
one slightly negative eigenvalue. However, this does not cause any problems as
LIBSVM can cope with this.

For training and testing we used the same data sets as before and we also
trained probability estimates and used majority weighting on the estimated prob-
abilities of the different alignments as before, the results are given in Table 3.

The results show that every kernel that makes use of the BLOSUM62 matrix
outperforms its counterpart that doesn’t with a significant difference. This shows
that the use of special purpose (dis)similarity measures defined on the input
examples can have a positive influence on the classification results.

In the light of these results it is our belief that the use of these kernel func-
tions in a complete PSSP system can lead to a system with really competitive
results. Moreover, experts might be able to apply post-processing heuristics or
to refine the metric defined on the input examples, for example by making use
of other substitution matrices like the BLOSUM40, BLOSUM100 or even a to-
tally different family of matrices. Additionally it could also be tried to use a
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Table 2

Kernel Class Precision Recall Overall Accuracy

KSOK α 76.78% 74.85%
β 73.73% 50.08% 71.89% ± 0.55
coil 67.87% 80.38%

KORBK α 77.06% 76.38%
β 72.58% 54.72% 72.96% ± 0.54
coil 69.97% 79.22%

KNODK α 76.69% 76.54%
β 72.17% 55.96% 73.07% ± 0.57
coil 70.59% 78.74%

Table 3

Kernel Class Precision Recall Overall Accuracy

KPIK α 77.70% 75.81%
β 75.52% 52.72% 73.05% ± 0.56
coil 68.94% 80.95%

KSRBK α 78.17% 76.07%
β 75.69% 53.90% 73.49% ± 0.52
coil 69.43% 81.18%

KNSDK α 77.86% 76.78%
β 73.44% 57.53% 73.67% ± 0.54
coil 70.55% 79.14%

weighted kernel function like one of the WOK, WRBF or WNDK making use of
information gain ratio weights or a combination of such weighting with substi-
tution matrices. Finally, optimizing the left and right context might also further
improve the accuracy a little.

6 Conclusion

This article gave a concise overview of the theory of support vector machines with
a strong focus on the relationship between kernel functions, similarity measures,
metrics and distances. It was shown that the use of (dis)similarity measures,
defined on the input examples, in the kernel function of a SVM is an impor-
tant design decision. In this context we argued that for discrete symbolic input
spaces the use of the orthonormal vectors is not the best choice because the
(dis)similarity measures one would like to use in the kernel functions are defined
on strings and contexts and not on real, orthonormal vectors. In particular we
considered the case where input examples are formed by sliding a window over
a sequence of strings or characters. For this type of problems a number of kernel
functions, working directly on contexts, and based on metrics defined on those
contexts, have been described. We started out with a very simple linear kernel
that serves as a basis for designing other kernels in a similar way. Two such other
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kernels, one based on a weighted distance function and one based on similarity
matrices, were described. In general, a more intuitive framework for designing
kernel functions, based on (dis)similarity measures on contexts, was proposed.
Moreover, for every kernel function it was shown that it satisfies the necessary
conditions of a kernel. Finally in the experiments the proposed kernel functions
have been applied to the problem of protein secondary structure prediction and
compared with each other. The results showed that the proposed method can
serve as a valid and competitive alternative for SVM learning with symbolic data
and input examples formed by a sliding window.
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Coefficients
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Abstract. We investigate theoretically some properties of variational
Bayes approximations based on estimating the mixing coefficients of
known densities. We show that, with probability 1 as the sample size
n grows large, the iterative algorithm for the variational Bayes approx-
imation converges locally to the maximum likelihood estimator at the
rate of O(1/n). Moreover, the variational posterior distribution for the
parameters is shown to be asymptotically normal with the same mean
but a different covariance matrix compared with those for the maximum
likelihood estimator. Furthermore we prove that the covariance matrix
from the variational Bayes approximation is ‘too small’ compared with
that for the MLE, so that resulting interval estimates for the parameters
will be unrealistically narrow.

1 Introduction

Variational Bayes approximations, introduced by Attias [1,2], have been success-
fully applied to complex models involving incomplete-data where computational
difficulties arise in the ideal Bayesian approaches, as for instance with hidden
Markov models and mixture models. The approximations are widely recognised
to be effective and promising in a series of papers, such as [3,4,5,6,7,8,9,10] and
the references therein. In these earlier contributions, the approximations were
shown empirically to be convergent and consistent. In Attias [1,2] and Penny
and Roberts [10] the authors claimed that the variational Bayes estimator ap-
proaches the maximum likelihood estimator in the large sample limit, but no
rigorous proof was given. While experimental results are often satisfactory in
practice, exact theoretical assessment of the quality of this method is an impor-
tant issue.

In this paper we study some properties of variational Bayes approximations
theoretically for certain mixture models. Based on estimating the mixing coef-
ficients of known densities, we show that, with probability 1 as the sample size
n grows large, the iterative algorithm for the variational Bayes approximation
converges locally to the maximum likelihood estimator at the rate of O(1/n).
Moreover, we prove that the variational posterior distribution for the parameters
is asymptotically normal with the same mean but a different covariance matrix
compared with those for the maximum likelihood estimator. Further develop-
ments show that the covariance matrix from the variational Bayes approxima-
tion is ‘too small’ compared with that for the MLE, so that resulting interval
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estimates for the parameters will be too narrow. Numerical examples reinforce
the theoretical analysis.

2 The Mixture Model and the Variational Approximation

We consider a model in which we have a mixture of m known densities p1, p2,
. . . , pm. The density of an observation is given by

p(yi|Θ) =
m∑

s=1

ps(yi)p(si = s|Θ) , (1)

where yi ∈ IRd denotes the ith observed data vector, and si indicates the hidden
component that generated it. The components are labelled by s = 1, 2, . . . ,m,
and the component s has mixing coefficient θs = p(si = s|Θ) for any i. We write
the parameters collectively as Θ = (θ1, θ2, . . . , θm)′, and assign a Dirichlet prior
distribution D(a(0)

1 , a
(0)
2 , . . . , a

(0)
m ) to Θ.

Suppose that we have (complete) data consisting of a random sample of size
n, with Y = (y1, y2, . . . , yn)′ and S = (s1, s2, . . . , sn)′. Then the joint density of
Θ, S and Y is

p(Θ,S, Y ) ∝
{ m∏

s=1

θ
a(0)

s −1
s

} n∏
i=1

{
θsipsi(yi)

}
.

Since the exact posterior distribution of Θ requires marginalising p(Θ,S|Y )
over S, which leads to intractable calculations when the sample size is large,
alternative approximate distributions need to be developed. In the variational
Bayes approach, we use an approximating density q(S,Θ) for p(S,Θ|Y ), which
factorises as q(S,Θ) = q(S)(S)q(Θ)(Θ), and is chosen to maximise∫ ∑

{S}
q(S,Θ) log

p(Θ,S, Y )
q(S,Θ)

dΘ .

It follows that q(S)(S) factorises as q(S)(S) =
∏n

i=1 q
(S)
i (si) and the variational

posterior can be obtained by the following iterative procedure. In turn, we per-
form the following two stages.

(i) Optimise q(Θ)(Θ) for fixed {q(S)
i (si), i = 1, . . . , n}. This step results in

q(Θ)(Θ) ∼ D({a(0)
s +

n∑
i=1

ris}m
s=1) , (2)

where ris = q
(S)
i (si = s).

(ii) Optimise {q(S)
i (si), si = 1, . . . ,m, i = 1, . . . , n} for fixed q(Θ)(Θ). This

results in

ris = q
(S)
i (si = s) =

ps(yi)φs∑m
s=1 ps(yi)φs

, s = 1, . . . ,m, (3)



Variational Bayes Estimation of Mixing Coefficients 283

where

φs = exp{
∫

q(Θ)(α) logαsdα}, α = (α1, . . . , αm)′ .

We write φ = (φ1, . . . , φm)′.
This iterative procedure can be initialised by taking, for each i and s,

ris =
ps(yi)a

(0)
s∑m

s=1 ps(yi)a
(0)
s

.

3 Local Convergence of the Iterative Procedure

An iterative procedure is said to converge locally to a limit if the iterates converge
to that limit whenever the starting values are sufficiently near to the limit. We
suppose that the true value of the parameter Θ is Θ∗, with 0 < θ∗s < 1, s =
1, . . . ,m and

∑m
s=1 θ∗s = 1. In this section we shall show that the algorithm

presented in the previous section converges locally to Θ∗.
In the kth iteration, we write

θ(k)
s =

1
n

n∑
i=1

r
(k)
is , Θ(k) = (θ(k)

1 , . . . , θ(k)
m )′ ,

where the notation for r now recognises the fact that the r-values change from
iteration to iteration.

We define the variational Bayesian estimator of a parameter as its variational
posterior mean. Then the procedure given by (2) and (3) suggests the following
algorithm for calculating the variational Bayesian estimate of Θ: starting with
some initial value Θ(1), successive iterates are defined inductively by

Θ(k+1) = Φn(Θ(k)) (4)

for k = 1, 2, . . ., where Φn = (Φ1
n, . . . , Φ

m
n )′,

Φs
n(Θ(k))

�
=

1
n

n∑
i=1

ps(yi)φ
(k)
s∑m

s=1 ps(yi)φ
(k)
s

,

φ(k)
s = exp{

∫
q(Θ)(k)(α) logαsdα} , (5)

and
q(Θ)(k)(α) ∼ D({a(0)

s + nθ(k)
s }m

s=1) . (6)

We have the following theorem.

Theorem 1. With probability 1 as n approaches infinity, the iterative procedure
(4) converges locally to the true value Θ∗.
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Proof. We first prove that, with probability 1 as n approaches infinity, the op-
erator Φn is locally contractive; that is, there exists a number λ, 0 ≤ λ < 1, such
that

‖Φn(Θ̄)− Φn(Θ∗)‖ ≤ λ‖Θ̄ −Θ∗‖ ,

whenever Θ̄ lies sufficiently near Θ∗.
Since Θ̄ is near Θ∗, one can write

Φn(Θ̄)− Φn(Θ∗) = ∇Φn(Θ∗)(Θ̄ −Θ∗) + O(‖Θ̄ −Θ∗‖2) ,

where ∇Φn(Θ∗) denotes the gradient of Φn(Θ) evaluated at Θ∗. Consequently,
it is sufficient to show that ∇Φn(Θ∗) converges with probability 1 to an operator
which has norm less than 1.

From the definition of the operator Φn, we have, for s, j = 1, . . . ,m, that

∇jΦ
s
n(Θ∗) =

1
n

n∑
i=1

ps(yi)φj
s(
∑m

t=1 pt(yi)φt)− ps(yi)φs(
∑m

t=1 pt(yi)φ
j
t )

(
∑m

t=1 pt(yi)φt)2
,

where φs is as given in (5)-(6) but with Θ(k) replaced by Θ∗ in (6), and where
φj

s denotes the derivative of φs with respect to θj. However, it is obvious that,
as n tends to infinity, the mean of θs corresponding to the density q(Θ)(Θ) is

a
(0)
s + nθ∗s∑m

s=1 a
(0)
s + n

→ θ∗s ,

the covariance between θs and θt, for s = t, is

− (a(0)
s + nθ∗s)(a(0)

t + nθ∗t )

(
∑m

s=1 a
(0)
s + n)2(

∑m
s=1 a

(0)
s + n + 1)

= O(
1
n

) → 0 ,

and the variance of θs is

(a(0)
s + nθ∗s)(

∑m
s=1 a

(0)
s − a

(0)
s + n− nθ∗s)

(
∑m

s=1 a
(0)
s + n)2(

∑m
s=1 a

(0)
s + n + 1)

= O(
1
n

) → 0 .

From these we show in Appendix A that, as n tends to infinity,

φs → θ∗s ,

φj
s →

{
1, if j = s ;
0, if j = s .

Thus from Appendix B we obtain that, with probability 1, as n tends to infinity,

∇jΦ
s
n(Θ∗) →

⎧⎪⎪⎨
⎪⎪⎩

IE
{
ps(yi)(

∑m
s=1 ps(yi)θ∗s)− p2

s(yi)θ∗s
(
∑m

s=1 ps(yi)θ∗s)2

}
, if j = s ;

−IE
{

ps(yi)pj(yi)θ∗s
(
∑m

s=1 ps(yi)θ∗s)2

}
, if j = s ,

= IE
{

ps(yi)∑
m
s=1 ps(yi)θ∗

s

}
δjs − θ∗s · IE

{
ps(yi)pj(yi)

(
∑

m
s=1 ps(yi)θ∗

s )2

}
,
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where δjs is the Kronecker delta function and the expectation corresponds to the
true model in which Θ = Θ∗. Note that here yi represents any random vector
distributed according to the probability density of the form (1).

Since

IE
{

ps(yi)∑m
s=1 ps(yi)θ∗s

}
=
∫

ps(yi)∑m
s=1 ps(yi)θ∗s

· p(yi)dyi = 1 , (7)

where p(yi) =
∑m

s=1 ps(yi)θ∗s is the (true unconditional) probability density of
each observation, the last expression can be rewritten as

∇Φn(Θ∗) → I −ΞΨ ,

where I denotes the identity matrix, Ξ
�
= diag(θ∗1 , θ

∗
2 , · · · , θ∗m) and

Ψ = IE

⎛
⎜⎜⎜⎝

ν1
ν2
...

νm

⎞
⎟⎟⎟⎠(ν1 ν2 · · · νm

)
, νs =

ps(yi)∑m
s=1 ps(yi)θ∗s

. (8)

Obviously Ψ is a positive definite matrix. Therefore, as n tends to infinity,

∇Φn(Θ∗) < I .

Next we prove that I − ΞΨ ≥ 0. Since Ξ is a positive diagonal matrix, it
suffices to show that

Θ′Ξ−1Θ ≥ Θ′Ξ−1ΞΨΘ = Θ′ΨΘ (9)

for any Θ = (θ1, . . . , θm)′.
In fact, one has

Θ′ΨΘ = IE(θ1ν1 + θ2ν2 + · · ·+ θmνm)2

= IE

[
m∑

s=1

(θ∗−1
s θs · θ∗sνs)

]2

.

As a corollary of Schwarz’s inequality we have that, if ηs ≥ 0 for s = 1, · · · ,m
and

∑m
s=1 ηs = 1, then

|
m∑

s=1

ξsηs|2 ≤
m∑

s=1

ξ2
sηs (10)

for all {ξs}s=1,···,m (see [11]).
Applying this result and noting that

∑m
s=1 θ∗sνs = 1, we obtain

Θ′ΨΘ ≤ IE

[
m∑

s=1

(θ∗−1
s θs)2θ∗sνs

]
= IE

[
m∑

s=1

θ∗−1
s θ2

sνs

]

=
m∑

s=1

θ∗−1
s θ2

sIEνs =
m∑

s=1

θ∗−1
s θ2

s = Θ′Ξ−1Θ ,

because of (7).
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Thus we have proved that∇Φn(Θ∗) converges with probability 1 to an opera-
tor with norm less than 1, and consequently the operator Φn is locally contractive.

From the above proof, it is then obvious that Φn(Θ∗) tends to Θ∗ as n
approaches infinity. Since

‖Θ(k+1) −Θ∗‖ ≤ ‖Φn(Θ(k))− Φn(Θ∗)‖+ ‖Φn(Θ∗)−Θ∗‖
≤ λ‖Θ(k) −Θ∗‖+ ‖Φn(Θ∗)−Θ∗‖ ,

the iterative procedure (4) converges locally to the true value Θ∗ as n approaches
infinity . � 

4 The Convergence Rate of the Variational Bayes
Estimator

In this section we consider the rate at which the variational Bayes estimator
converges to the maximum likelihood estimator (MLE). Suppose the sample size
n is large. Let Θ̂n = (θ̂n

1 , . . . , θ̂
n
m)′ and Θ̃n = (θ̃n

1 , . . . , θ̃
n
m)′ denote the fixed point

of iteration (4) in the neighbourhood of the true value and the variational Bayes
estimator, respectively; that is, from (4),

θ̂n
s =

1
n

n∑
i=1

ps(yi)φs∑m
s=1 ps(yi)φs

, (11)

q(Θ)(α) ∼ D({a(0)
s + nθ̂n

s }m
s=1) ,

φs = exp{
∫

q(Θ)(α) logαsdα} ,

and

θ̃n
s

�
=
∫

αq(Θ)(α)dα =
a
(0)
s + nθ̂n

s∑m
s=1 a

(0)
s + n

.

Hence Θ̃n = Θ̂n + O(1/n).
Suppose that Θ̄n = (θ̄n

1 , . . . , θ̄
n
m)′ is the strongly consistent MLE of the pa-

rameter Θ; that is, θ̄n
s is the solution of the following likelihood equation (see

Peters and Walker [11], Redner and Walker [12]):

lns (Θ)
�
= θs −

1
n

n∑
i=1

ps(yi)θs∑m
s=1 ps(yi)θs

= 0 ,

for s = 1, . . . ,m. Let ln = (ln1 , . . . , l
n
m)′. Then we have the following lemma.

Lemma 1. With probability 1 as n tends to infinity, the gradient of the likelihood
function ln, evaluated at the true value Θ∗, converges uniformly to ΞΨ , where
Ξ and Ψ are defined as in the previous section.

Proof. After some straightforward manipulations, the convergence is a direct
corollary of the strong law of large numbers. � 
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Meanwhile, from (11) we have that

0 = θ̂n
s −

1
n

n∑
i=1

ps(yi)φs∑m
s=1 ps(yi)φs

= lns (Θ̂n) +
1
n

n∑
i=1

[
ps(yi)θ̂n

s∑m
s=1 ps(yi)θ̂n

s

− ps(yi)φs∑m
s=1 ps(yi)φs

]

= lns (Θ̂n) +
1
n

n∑
i=1

∑m
j=1 ps(yi)pj(yi)(θ̂n

s φj − φsθ̂
n
j )

[
∑m

s=1 ps(yi)θ̂n
s ][
∑m

s=1 ps(yi)φs]
.

It follows from Appendix A that φs = θ̂n
s + O(1/n), so θ̂n

s φj − φsθ̂
n
j = O(1/n).

Thus the second term is of order O(1/n). From Taylor’s expansion the first term
can be rewritten as

ln(Θ̂n) = ln(Θ̄n) +∇ln(Θ̄n + λ(Θ̂n − Θ̄n))(Θ̂n − Θ̄n)
= ∇ln(Θ̄n + λ(Θ̂n − Θ̄n))(Θ̂n − Θ̄n) ,

where 0 ≤ λ ≤ 1. Thus, we obtain

0 = ∇ln(Θ̄n + λ(Θ̂n − Θ̄n))(Θ̂n − Θ̄n) + O(
1
n

) .

We have proved that Θ̂n converges to Θ∗, and it is well known that Θ̄n tends
to Θ∗, so it follows from Lemma 1 that ∇ln(Θ̄n + λ(Θ̂n − Θ̄n)) converges to
ΞΨ . Therefore, we have that Θ̂n = Θ̄n + O(1/n), and consequently that Θ̃n =
Θ̄n + O(1/n).

Remark 1. It is known that the (non-variational) Bayes estimator and the MLE
get closer to each other at rate O(1/n), so the variational Bayes estimator is
asymptotically consistent at the same rate.

5 Asymptotic Normality of the Variational Posterior
Distribution

In this section, we show that the variational posterior distribution for the param-
eter Θ obtained by the iterative procedure has also the property of asymptotic
normality. This implies that the variational posterior becomes more and more
concentrated around the true parameter value as the sample size grows.

Suppose the sample size n is large. Denote by Θ̂n = (θ̂n
1 , . . . , θ̂

n
m)′ the fixed

point of the iteration (4). Thus the variational posterior density of Θ at Θ̂n is

q(Θ)
n (Θ) ∼ D({â(n)

s }m
s=1) , (12)

where â
(n)
s = a

(0)
s +

∑n
i=1 r̂is and r̂is = q

(S)
i (si = s).
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In the rest of the paper, we express θm explicitly as 1 −
∑m−1

s=1 θs. Thus the
density (12) can be rewritten as a density of exponential family type:

q
(Θ)
n (Θ) ∝ exp

{
(â(n)

1 − 1) log θ1 + · · ·+ (â(n)
m − 1) log(1−

∑m−1
s=1 θs)

}
�
= exp{h′(Θ)β − αψ(Θ)} ,

(13)

where
β

�
= (â(n)

1 − 1, . . . , â(n)
m−1 − 1)′ ,

h(Θ)
�
= (log θ1, . . . , log θm−1)′ ,

α
�
= 1− â(n)

m , and ψ(Θ)
�
= log(1−

m−1∑
s=1

θs) .

In Wang and Titterington [13] we have proved the asymptotic normality
of the variational posterior distributions associated with natural exponential
families with missing values. Since the algorithm (4) has been proved to be
convergent, along the same lines it can be easily checked that the result holds
for the density (13). Therefore, if Θ̃n = (θ̃n

1 , . . . , θ̃
n
m−1)

′ is the maximiser of
h′(Θ)β−αψ(Θ) and we define Σn = −[∇2 log q

(Θ)
n (Θ̃n)]−1, we have the following

theorem.

Theorem 2. As n approaches infinity, the variational posterior density q
(Θ)
n (·)

converges in distribution to a normal density with mean Θ̃n and covariance ma-
trix Σn.

More clearly, from the definition we can actually evaluate Θ̃n explicitly as

θ̃n
s =

â
(n)
s − 1∑m

s=1(â
(n)
s − 1)

=
a
(0)
s +

∑n
i=1 r̂is − 1∑m

s=1 a
(0)
s + n−m

, s = 1, . . . ,m− 1 .

Thus the covariance matrix Σn can be expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â
(n)
1 −1
(θ̃n

1 )2
+ â(n)

m −1
(θ̃n

m)2

. . . â
(n)
m −1
(θ̃n

m)2
. . .

â
(n)
m −1
(θ̃n

m)2
. . .

â
(n)
m−1−1

(θ̃n
m−1)

2 + â(n)
m −1
(θ̃n

m)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

where θ̃n
m is defined as 1−

∑m−1
s=1 θ̃n

s .
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It follows from Theorem 1 and the law of large numbers that 1
n

∑n
i=1 r̂is

converges to θ∗s , and hence we obtain that Θ̃n converges to the true value Θ∗

and nΣn converges to the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ∗−1
1 + θ∗−1

m

. . . θ∗−1
m

. . .

θ∗−1
m

. . .
θ∗−1

m−1 + θ∗−1
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

which is equal to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ∗1(1− θ∗1)
. . . −θ∗i θ

∗
j

. . .

−θ∗i θ
∗
j

. . .
θ∗m−1(1 − θ∗m−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
= Λ . (14)

There have been a large number of contributions about the asymptotic nor-
mality of maximum likelihood estimators and posterior distributions; see for
instance Walker [14], Heyde and Johnstone [15], Chen [16], Bernardo and Smith
[17] and Ghosal, Ghosh and Samanta [18]. In the setting of mixture models,
letting Θ̄n = (θ̄n

1 , . . . , θ̄
n
m−1)

′ be the strongly consistent maximum likelihood es-
timator of the parameter Θ and I(Θ) the Fisher information matrix, Redner
and Walker [12] showed the following theorem.

Theorem 3. As n tends to infinity,
√
n(Θ̄n − Θ∗) is asymptotically normally

distributed with mean zero and covariance matrix I(Θ∗)−1.

From Theorems 2 and 3, the limiting densities of the variational Bayes density
and the MLE have the same mean (i.e. the true value Θ∗). However one can see
that their covariance matrices are not equal in general. An interesting question
is: how can they be compared? In the next section we will study this issue.

6 Fisher Information and Covariance Associated with
Variational Bayes Approximation

In this section, we denote by y any random vector distributed according to the
probability density of the form (1). Therefore, the Fisher information matrix is
given by

I(Θ) =
∫

[∇ log p(y|Θ)][∇ log p(y|Θ)]′p(y|Θ)dy . (15)
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Let L(Θ) = log p(y|Θ) and define ν as in (8). After a straightforward calcu-
lation the Fisher information matrix (15) can be rewritten as

I(Θ) =
∫

V V ′p(y|Θ)dy = IE[V V ′] ,

where V = (ν1 − νm, . . . , νm−1 − νm)′.

Proposition 1. Letting Λ denote the limiting covariance matrix of the varia-
tional posterior of the parameter Θ, we have that I(Θ∗)−1 ≥ Λ.

Proof. Since Λ is positive definite, it is sufficient to show that

Θ′I(Θ∗)Θ ≤ Θ′Λ−1Θ (16)

for any Θ = (θ1, . . . , θm−1)′.
In fact, along the same lines as the proof of inequality (9) one can obtain

Θ′IE(V V ′)Θ ≤
m∑

s=1

θ2
sθ

∗−1
s ,

where θm
�
= −

∑m−1
s=1 θs.

On the other hand, by (14) it can be easily checked that

Θ′Λ−1Θ =
m∑

s=1

θ2
sθ

∗−1
s .

The proof is complete. � 

By (10) equality in (16) holds if and only if the mixture model (1) has only
one component or the supports of the component densities are disjoint. If the
components are well separated or have little overlap, the mixture distribution can
be regarded approximately as multinomial. In this case, at a given observation
yi, there exists one ps(yi) which is far larger than the others, and therefore
the inverse of the Fisher information matrix is close to the covariance matrix
of the variational posterior distribution. Proposition 1 shows that in general
the covariance matrix from the variational Bayes approximation is ‘too small’
compared with that for the MLE, so that resulting interval estimates for the
parameters will be too narrow.

7 Numerical Experiments

We demonstrate our results with a simple mixture of two known normal densities.
First we fix the two normal densities to have means of 2 and 4 and unit

variance, and generate a total of 100 observations using θ = 0.65. For different
sample sizes up to n = 100 the MLE θ̄n and the variational Bayes estimate θ̂n

based on a Beta prior distribution for θ with a
(0)
1 = a

(0)
2 = 1 are computed using
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Fig. 1. Variational Bayesian estimate of a mixing weight and MLE plotted against the
sample size
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Fig. 2. Variational posteriors of the parameter θ and normal densities for different
sample sizes

the first n observations, and are plotted in Figure 1. When the sample size is
small, there is a gap between the two estimates, but quickly they track each
other very closely as the sample size grows.

In Figure 2, we plot the corresponding variational posterior densities and the
normal density N (θ̄n,Λ/n) for the sample sizes n = 2, 10, 50, 100, where Λ is



292 B. Wang and D.M. Titterington

−10 −5 0 5 10
−20

0

20

40

60

80

100

120
Mixing coefficient theta=0.01

mu
−10 −5 0 5 10

−2

0

2

4

6

8

10

12
Mixing coefficient theta=0.1

mu

−10 −5 0 5 10
−1

0

1

2

3

4

5
Mixing coefficient theta=0.3

mu
−10 −5 0 5 10

−1

0

1

2

3

4

5
Mixing coefficient theta=0.5

mu

Fig. 3. The inverse of the variance associated with the variational Bayes approximation
and the Fisher information for different mixing coefficients. The solid lines denote the
Fisher information and the dashed horizontal lines indicate the inverse of the variance
for the variational Bayes approximation.

defined in (14). It can be seen that the variational posterior density becomes
closer and closer to the limiting normal density.

Finally, to compare the variance Λ associated with the variational Bayes
approximation with the Fisher information, we fix one component to have mean
zero and unit variance and compute the inverse of the variance Λ and the Fisher
information, allowing the other component to have varying mean μ. The results
are plotted in Figure 3 for various values of the mixing coefficient θ. The inverse
of the variance associated with the variational Bayes approximation does not
vary with the changes of μ, whereas the Fisher information does. Obviously, if
the components in the mixture model are widely separated, these two quantities
are very similar, whereas, if the components are nearly identical, they are very
different.

8 Conclusion

We have investigated some properties of variational Bayes approximations,
namely consistency and asymptotic normality, and compared the true covari-
ance matrix of the posterior distribution (the inverse of the Fisher information)
with the covariance matrix associated with its variational Bayes approximation.
The results reveal that in mixture models the point estimate obtained by using
a factorised form q(S)(S)q(Θ)(Θ) for the posterior distributions of Θ and S does
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not lead to bias for large samples, but the interval estimates for the parameters
will be too narrow in general.
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Appendix A

First the following conclusion holds. Suppose that pn(x) is the probability density
function of the random variable Xn, that IEXn = μn → μ, as n →∞, and that
Cov(Xn) = O(1/n). Then, for any function f(·) with continuous second-order
derivative near μ, we have

IEf(Xn) = f(μn) + O(
1
n

) .

This follows from the Taylor expansion

f(Xn) = f(μn) +∇f(μn) · (Xn − μn) +
1
2
(Xn − μn)′∇2f(μn)(Xn − μn)

+o(‖Xn − μn‖2) ,

because then

IEf(Xn) = f(μn) +∇f(μn) · (IEXn − μn)

+
1
2
IE
[
(Xn − μn)′∇2f(μn)(Xn − μn)

]
+ o(IE‖Xn − μn‖2)

= f(μn) +
1
2
IE
[
(Xn − μn)′∇2f(μn)(Xn − μn)

]
+ o(IE‖Xn − μn‖2)

= f(μn) + O(
1
n

) .

Applying this to the case of

f(x) = log x, and Xn : q(Θ)(α) ∼ D({a(0)
s + nθs}m

s=1) ,

we easily obtain that

IEf(Xn) =
∫

q(Θ)(α) logαsdα = log(IEXn) + O(
1
n

) .

Hence, from Taylor expansion, we have

φs = exp{
∫

q(Θ)(α) logαsdα} = exp{log(IEXn) + O(
1
n

)}
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= exp{log(IEXn)} + exp{log(IEXn)} ·O(
1
n

) + O(
1
n2 )

= IEXn + IEXn ·O(
1
n

)

= θs + O(
1
n

) → θs .

We have assumed that 0 < θ∗s < 1 and our conclusions are local in nature,
so there is no loss of generality in restricting the discussion to 0 < ε0 ≤ θ∗s ≤
1−ε0 < 1 for a small positive constant ε0. Thus the above convergences are also
uniform in θs. As a result we have

φj
s →

{
1, if j = s ;
0, if j = s .

Appendix B

We show that, if Fn(·) → F0(·) uniformly, then, with probability 1,

1
n

n∑
i=1

Fn(Xi) → IEF0(Xi)

for any sequence {Xn} of independent and identically distributed random vari-
ables.

This is a direct corollary of the strong law of large numbers and the following
calculation:

| 1
n

n∑
i=1

Fn(Xi)− IEF0(Xi)|

≤ | 1
n

n∑
i=1

Fn(Xi)−
1
n

n∑
i=1

F0(Xi)|+ | 1
n

n∑
i=1

F0(Xi)− IEF0(Xi)|

≤ 1
n

n∑
i=1

|Fn(Xi)− F0(Xi)|+ | 1
n

n∑
i=1

F0(Xi)− IEF0(Xi)|

≤ sup
x
|Fn(x)− F0(x)| + | 1

n

n∑
i=1

F0(Xi)− IEF0(Xi)| .
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Abstract. Condition numbers of the full rank least squares (LS) prob-
lem minx ‖Ax − b‖2 are considered theoretically and their computational
implementation is compared. These condition numbers range from a sim-
ple normwise measure that may overestimate by several orders of magni-
tude the true numerical condition of the LS problem, to refined compo-
nentwise and normwise measures. Inequalities that relate these condition
numbers are established, and it is concluded that the solution x0 of the
LS problem may be well-conditioned in the normwise sense, even if one
of its components is ill-conditioned. It is shown that the refined condi-
tion numbers are ill-conditioned in some circumstances, the cause of this
ill-conditioning is identified, and its implications are discussed.

1 Introduction

Four condition numbers of the least squares (LS) problem

min
x
‖Ax− b‖ , ‖·‖ = ‖·‖2 , (1)

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m ≥ n, rank A = n, and A is known exactly,
are considered theoretically and computationally. These condition numbers range
from a simple normwise measure to refined measures that consider the numerical
condition of each component of the solution x0 of the LS problem. The simple
normwise condition number, which is given by κLS(A, θ) = κ(A)/ cos θ, where
κ(A) is equal to the ratio of the largest to the smallest singular value of A, and
cos θ = 1 if b does not lie in the column space of A, reduces to κ(A) if m = n. It is
shown that although the refined condition numbers yield much more information
than κLS(A, θ), their computational implementation may pose problems because
they are ill-conditioned in some circumstances.

The solution x0 of (1) satisfies

ATAx = AT b,

and is given by

x0 = A†b = V S†UT b =
n∑

i=1

uT
i b

σi
vi,

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 296–318, 2005.
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where X† =
(
XTX

)−1
XT is the left inverse of X , USV T is the singular value

decomposition (SVD) of A, vi is the i’th column of V , uT
i is the i’th row of

U , and σi, i = 1, . . . , n, are the singular values of A, arranged in non-increasing
order.

Four condition numbers of the LS problem are considered in Section 2, and
it is shown in Section 3 that they are related by a series of inequalities. The
numerical stability of the condition numbers is discussed in Section 4, and it is
shown that the simplest condition number κLS(A, θ) can be computed reliably,
assuming that cos θ ≈ 1, but it may overestimate, by several orders of magni-
tude, the true numerical condition of x0. These properties of κLS(A, θ) must
be compared with those of the refined normwise and componentwise condition
numbers, which provide more detailed information but are, as noted above, ill-
conditioned in some circumstances. This instability limits their practical value,
and a regularised approximation to the refined normwise condition number is
considered in Section 5. Several examples that illustrate the results are given,
and Section 6 contains a summary of the paper.

2 Condition Numbers for the Least Squares Problem

Four condition numbers of the solution x0 of the LS problem are considered in
this section. These range from a simple normwise measure to refined componen-
twise measures.

2.1 A Simple Normwise Condition Number

It is shown in [8] that a simple normwise condition number of x0 is

κLS(A, θ) = max
δb,b∈Rm

Δx0

Δb
=

σ1

σn

1
cos θ

=
κ(A)
cos θ

, (2)

where
Δx0 =

‖δx0‖
‖x0‖

, Δb =
‖δb‖
‖b‖ ,

the residual r and angle θ satisfy

r := Ax0 − b, ‖r‖ = ‖b‖ sin θ and ‖Ax0‖ = ‖b‖ cos θ, (3)

and κ(A) = σ1/σn is the condition number of A.
Practical problems rarely generate situations in which θ ≈ π/2 because it is

usual to pose the LS problem such that b can be approximated, with a small
error, by a linear combination of the columns of A. The matrix A incorporates
the model that represents the data, for example, the basis functions that are
used in regression, and a poor choice of basis functions may lead to a large value
of θ. Even if θ is small, κLS(A, θ) is large if A is ill-conditioned.

The main disadvantage of κLS(A, θ) follows immediately from (2). In partic-
ular, it is a worst case upper bound of the true numerical condition of x0, taken
over all vectors b and δb, and the following example shows that κLS(A, θ) may
overestimate the true numerical condition by several orders of magnitude.
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Fig. 1. A set of 100 points and their approximating curve for b = b1

Example 1. Regression was performed on two sets of 100 data points (xi, yi) , i =
1, . . . , 100, in the interval I = [1, . . . , 20] using a linear combination of 33 radial
basis functions,

yi =
33∑

k=1

ak exp

(
− (xi − dk)2

2σ2
d

)
, i = 1, . . . , 100,

where σd = 1.35 and the centres dk of the basis functions are not uniformly dis-
tributed in I. The coefficient matrix A is therefore of order 100×33, b stores the
function values yi, and x stores the coefficients ak of the radial basis functions.

The first set of 100 points, which are stored in the vector b = b1, and their
regression curve are shown in Figure 1, and it is seen that the error between the
exact data points and the approximating curve is small. The LS problem was
solved twice, once for the exact data b = b1, and once for perturbed data b1+δb1,
where the elements of δb1 are drawn from a zero mean Gaussian distribution,
such that ‖b1‖ / ‖δb1‖ = 2.9 × 105. The solutions of the LS problem for these
problems are shown in Figure 2, and it is seen that the noise has a significant
effect on the coefficients of the radial basis functions, such that the solution in
the presence of noise has no value.

The experiment was repeated for the second set of 100 data points, which
are stored in the vector b = b2. These points are shown in Figure 3, which also
shows the regression curve that is obtained using the same matrix A because
the same radial basis functions were used. The LS problem was therefore solved
twice, once for the exact data b = b2, and once for perturbed data b2 +δb2 where
‖b2‖ / ‖δb2‖ = 1.2 × 103. Figure 4 shows the coefficients of the regression curve
for these two cases, and it is seen that the noise has very little effect on the exact
coefficients.
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Fig. 2. The coefficients of the radial basis functions for the exact (+) and noisy (o)
data for the curve shown in Figure 1
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Fig. 3. A set of 100 points and their approximating curve for b = b2

The condition number of A is κ(A) = 5.1 × 108 and the vectors b1 and b2
lie in the column space of A, from which it follows that κLS (A, θ) = κ(A) for
b = b1 and b = b2. Figures 2 and 4 show that this measure fails to distinguish
between the vectors b1 and b2, that is, the vectors b for which the LS problem is
well-conditioned, and the vectors b for which this problem is ill-conditioned. �

The failure of κLS(A, θ) to quantify the true numerical condition of a linear
algebraic equation is a disadvantage, which is overcome by the effective condition
number.
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Fig. 4. The coefficients of the radial basis functions for the exact (+) and noisy (o)
data for the curve shown in Figure 3

2.2 The Effective Condition Number

The effective condition number SLS (A, b) is superior to the condition num-
ber κLS (A, θ) because it distinguishes between the vectors b for which the LS
problem is ill-conditioned, and the vectors b for which the LS problem is well-
conditioned. It is defined as the maximum value of the ratio Δx0/Δb over all
perturbations δb ∈ Rm,

SLS (A, b) := max
δb∈Rm

Δx0

Δb
=

1
σn

‖b‖
‖x0‖

=
1
σn

‖b‖
‖S†UT b‖ , (4)

and it satisfies the inequality

1 ≤ SLS(A, b) ≤ κLS (A, θ) . (5)

The lower bound in (5) follows immediately, and derivation of the upper bound
is simplified by the introduction of the vector c ∈ Rm,

c = {ci}m
i=1 = UT b, (6)

from which it follows that (4) can be written as

SLS(A,Uc) =
‖c‖

σn

√∑n
i=1

(
ci

σi

)2
. (7)

Since

σn

√√√√ n∑
i=1

(
ci

σi

)2

=
σn

σ1

√√√√ n∑
i=1

(
σ1

σi
ci

)2

≥ 1
κ(A)

√√√√ n∑
i=1

c2i ,
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it follows that

SLS(A,Uc) ≤ κ(A)
‖c‖√∑n

i=1 c2i
. (8)

The application of the SVD of A to (3) shows that

cos θ =
‖Ax0‖
‖b‖ =

∥∥SS†c
∥∥

‖c‖ =

√∑n
i=1 c2i
‖c‖ ,

and thus the upper bound in (5) follows from (8).

Example 2. Consider Example 1 in which the LS problem was considered for
two right hand side vectors b. The effective condition numbers of this problem
for these vectors are

SLS (A, b1) = 4.6× 108 and SLS (A, b2) = 7.9.

It is clear that these values are consistent with Figures 2 and 4, respectively,
and thus the effective condition number is a measure, in the normwise sense, of
the numerical condition of the linear algebraic equations that result from these
problems in regression. �

The denominator of (7) suggests that the model

|ci| = σβ
i , β ≥ 0, (9)

for the absolute value of the components ci, i = 1, . . . , n, of c be postulated [4, 6].
This model is convenient because it follows from this equation that

SLS(A,Uc) =
‖c‖

σn

√∑n
i=1 σ

2(β−1)
i

,

and thus β controls the effective condition number of x0. The approximate value
of SLS(A, b) for three value of β is shown in Table 1, and it is seen that it
increases as β increases. In particular, the LS problem is well-conditioned in the
normwise sense if 0 ≤ β � 1, and it becomes ill-conditioned in this sense as β
increases.1 It follows, therefore, that the variation of β allows a wide class of LS
problems, from those that are well-conditioned to those that are ill-conditioned,
to be investigated. The form of the ratio |ci| /σi for different values of β is shown
in Figure 5, and it is seen that its value determines the monotonic nature of the
relationship.

The model (9) for β > 1 arises in the numerical solution of Fredholm integral
equations of the first kind, which typically occur in inverse problems [5, 6]. This
1 A distinction is made between componentwise and normwise stability because it is

shown in Section 3 that x0 may be well-conditioned in the normwise sense, but one
or more of its components may be ill-conditioned.
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Table 1. Approximate values of SLS(A, b) for different values of β

β ≥ 0 SLS(A, b), m �= n SLS(A, b), m = n

 1 ‖c‖
σ

β
n

= ‖c‖
|cn|

‖c‖
|cn|

1 ‖c‖√
nσn

= ‖c‖√
n|cn|

1√
n
κ(A)

� 1 κ(A)‖c‖
σ

β
1

= κ(A)‖c‖
|c1| κ(A)

condition on β requires that the magnitude of the coefficients ci decay to zero
faster than the singular values σi [4, 6],

|ci|
σi

→ 0 as i → n. (10)

This requirement is called the discrete Picard condition, and it plays an es-
sential role in the regularisation of ill-conditioned linear algebraic equations by
Tikhonov regularisation in standard form and truncated singular value decom-
position.

The restriction β > 1 is imposed in [4, 6] because it is assumed that the LS
problem is derived from the discretisation of a Fredholm integral equation of the
first kind. The condition β ≤ 1 is, however, included in this paper because many
problems that generate the LS problem, for example, regression and polynomial
basis conversion [9, 10, 11], may or may not be ill-conditioned, and it is therefore
necessary to consider (9) for all values of β.

It has been shown that the effective condition SLS (A, b) is superior to the
condition number κLS (A, θ) because more accurate information on the true
numerical condition of the LS problem can be determined. It would appear,
therefore, that the disadvantage of κ(A) and κLS (A, θ) has been overcome. The
following example shows, however, that more refined condition numbers must be
developed.

Example 3. Consider the matrix A and vector b that are given by [2],

A =

⎡
⎢⎢⎣

0.4919 0.1112 −0.6234 −0.6228
−0.5050 −0.6239 0.0589 0.0595

0.5728 −0.0843 0.7480 0.7483
−0.4181 0.7689 0.2200 0.2204

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0.4351
−0.1929

0.6165
−0.8022

⎤
⎥⎥⎦ .

The solution x0 of the equation Ax = b was computed, and b was then per-
turbed to b+ δb where the elements of δb are drawn from a zero mean Gaussian
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Fig. 5. Graphs of |ci| /σi against i = 1, . . . , n, for (a) β < 1, (b) β = 1 and (c) β > 1

distribution such that ‖b‖ / ‖δb‖ = 6.39× 103. The solution x̂0 = x0 + δx0 of the
equation Ax = b + δb was computed. The two solutions are

x0 =

⎡
⎢⎢⎣

1.000075414240576
−0.5000879795933287
−0.02425113887960606

0.02624513954981467

⎤
⎥⎥⎦ , x̂0 =

⎡
⎢⎢⎣

1.000133044180548
−0.4999705917859966
0.08574824910454026

−0.08372428931414788

⎤
⎥⎥⎦ .

The relative errors in the components x0,k, k = 1, . . . , 4, of x0 are

|δx0,1|
|x0,1| = 5.76× 10−5,

|δx0,2|
|x0,2| = 2.35× 10−4,

|δx0,3|
|x0,3| = 4.54, |δx0,4|

|x0,4| = 4.19,

and the componentwise condition numbers are therefore, approximately,

1
Δb

[
|δx0,1|
|x0,1|

|δx0,2|
|x0,2|

|δx0,3|
|x0,3|

|δx0,4|
|x0,4|

]
=
[
0.37 1.51 2.91× 104 2.69× 104

]
,

where Δb = ‖δb‖ / ‖b‖ = 1.56 × 10−4. It is seen that x0,1 and x0,2 are well-
conditioned, but x0,3 and x0,4 are ill-conditioned. The effective condition number
of the equation is SLS (A, b) = 1.44 × 103 and the condition number of A is
κ(A) = 2.03× 103. It is clear that the large value of SLS (A, b) is a reflection of
the ill-conditioned nature of x0,3 and x0,4, but it fails to consider the stability
of x0,1 and x0,2. �

This example shows that the effective condition number does not reveal how
an error in b is distributed among the components of x0. This information can
be obtained by assigning a condition number to each component of x0, and the
next section considers these condition numbers.
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2.3 Componentwise Condition Numbers

The condition numbers κLS (A, θ) and SLS(A, b) measure the errors in the norm-
wise manner, but more refined estimates of the numerical condition of x0 are
obtained by assigning a condition number to each of its components. These con-
dition numbers are introduced in [2] and expressions for them for the LS problem
are derived. Since they consider the interaction of A and b, they differ from the
collinearity measures that are introduced by Stewart [7], which only consider the
linear dependence of the columns of A.

The componentwise condition number RLS (tq, b) of the q’th component x0,q

of x0 is defined as the maximum value of the ratio of the relative error in x0,q

to the relative error in b,

RLS (tq, b) := max
δb∈Rm

Δx
(c)
0,q

Δb
, Δx

(c)
0,q =

|δx0,q|
|x0,q|

,

and it is easy to show that

RLS (tq, b) =
‖tq‖ ‖b‖
|x0,q|

=
‖tq‖ ‖b‖∣∣tTq b

∣∣ =
1

|cosαq|
, q = 1, . . . , n, (11)

where tq ∈ Rm, q = 1, . . . , n, is the q’th row of A†, and αq is the angle between
tq and b.

The n condition numbers (11) are very refined because they measure the
relative error in each component of x0. They discriminate between the well-
conditioned, and ill-conditioned, components of x0, and they therefore provide
information that cannot be deduced from the effective condition number.

The next section considers mixed condition numbers, which, as their name
implies, measure the errors in the componentwise and normwise senses. They
may therefore be considered as intermediate between the effective condition
number and the componentwise condition numbers.

2.4 Mixed Condition Numbers

The mixed condition numbers that are considered in this section use both com-
ponentwise and normwise measures, and they therefore display features of the
condition numbers that are considered in Sections 2.2 and 2.3.

The mixed condition numbers of the solution of the LS problem are defined
as

TLS (tq, b) := max
δb∈Rm

Δx
(m)
0,q

Δb
, Δx

(m)
0,q =

|δx0,q|
‖x0‖

,

and it is easy to show that

TLS (tq, b) =
‖tq‖ ‖b‖
‖x0‖

=
‖tq‖ ‖b‖
‖S†UT b‖ , q = 1, . . . , n. (12)

The proof of (12) is very similar to that of the componentwise condition numbers
(11).
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Example 4. Figure 6 shows the effective, componentwise and mixed condition
numbers of the solution x0 of the LS problem in Example 1 for b = b1. It
is seen that the componentwise condition numbers display a large variation in
magnitude, and that some of the values are smaller, and some are larger, than
the effective condition number. The mixed condition numbers are smaller than
their equivalent componentwise condition numbers, and they are also smaller
than the effective condition number. �

Figure 6 illustrates the general phenomenon that different condition num-
bers may differ by several orders of magnitude, and the next section establishes
inequalities between the condition numbers.

3 Inequalities Between the Condition Numbers

The condition numbers that are discussed in Section 2 quantify the numerical
stability of x0, and it therefore follows that there must be equations and/or
inequalities that unite them. The relationship between the effective condition
number and κLS(A, θ) is established in (5), and this section considers the rela-
tionships between these and the other condition numbers.

Consider initially the relationships between the componentwise and mixed
condition numbers, and the effective condition number, for some, but not all,
of the components of x0. These are developed by noting that if p ∈ Rn is an
arbitrary vector that satisfies ‖p‖ = 1, then the magnitude of at least one of its
components must be greater than or equal to 1/

√
n [2].

Since tTq is the q’th row of A†, it follows that

tTq = eT
q A† = eT

q V S†UT , (13)

where eq is the q’th standard basis vector, and thus

‖tq‖ =
∥∥eT

q V S†∥∥ ≥ ∣∣eT
q V S†en

∣∣ =
∣∣vT

q S†en

∣∣ = |vq,n|
σn

,

where vT
q is the q’th row of V and vq,n is element (q, n) of V . The result above

shows that at least one of the elements of the n’th column of V must be greater
than or equal to 1/

√
n, and thus there exists at least one integer k, 1 ≤ k ≤ n,

such that
‖tk‖ ≥

1√
nσn

.

It therefore follows from (11) that there exists at least one integer k for which

RLS (tk, b) =
‖tk‖ ‖b‖
|x0,k|

≥ 1√
nσn

‖b‖
|x0,k|

=
SLS(A, b)√

n

‖x0‖
|x0,k|

. (14)

This inequality is obtained on page 96 in [2], where it assumes a more complex
form because it is stated in terms of the condition number κ(A), rather than the
effective condition number SLS(A, b). It shows that there are two contributory
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Fig. 6. The effective condition number (-), componentwise condition numbers (+) and
mixed condition numbers (o) for the LS problem in Example 1 for b = b1. A logarithmic
scale is used for the condition numbers.

factors, a large value of the effective condition number and the condition ‖x0‖ �
|x0,k|, to a large value of a componentwise condition number. Similarly, it follows
from (12) that

TLS (tk, b) =
‖tk‖ ‖b‖
‖x0‖

≥ 1√
nσn

‖b‖
‖x0‖

=
SLS(A, b)√

n
. (15)

The inequalities (14) and (15) show that there exists at least one component of
x0 whose componentwise and mixed condition numbers, respectively, are large
if the effective condition number is large. This may suggest that these condi-
tion numbers are consistent, but the following example shows that this desired
consistency is not always present.

Example 5. Consider the equation[
1 0
0 1

] [
x1
x2

]
=
[
a
0

]
, a = 0,

for which

SLS(A, b) = κ(A) = 1 and TLS (t1, b) = TLS (t2, b) = 1,

and
RLS (t1, b) = 1 and RLS (t2, b) = ∞.

It follows that the solution is well-conditioned in the normwise and mixed senses,
but x2 is very ill-conditioned in the componentwise sense. �
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The inequalities (14) and (15) define lower bounds for at least one, but not all,
of the componentwise and mixed condition numbers of x0, respectively. Lower
bounds of these condition numbers that are satisfied by all the components of
x0 are now developed.

It follows from (13) that

‖tq‖ ≥
1
σ1

, q = 1, . . . , n,

and thus since

RLS (tq, b) =
‖tq‖ ‖b‖∣∣tTq b

∣∣ =
‖tq‖ ‖b‖
|x0,q|

≥ ‖tq‖ ‖b‖
‖x0‖

= TLS (tq, b) ,

it follows that

RLS (tq, b) ≥ TLS (tq, b) =
‖tq‖ ‖b‖
‖x0‖

≥ 1
σ1

‖b‖
‖x0‖

, q = 1, . . . , n.

Equation (4) therefore yields

RLS (tq, b) ≥ TLS (tq, b) ≥
SLS(A, b)

κ(A)
, q = 1, . . . , n, (16)

which establishes the inequalities between the effective, componentwise and
mixed condition numbers, and κ(A).

Lower and upper bounds for the mixed condition numbers are easily estab-
lished. In particular, it follows from (13) that

‖tq‖ ≤
1
σn

, q = 1, . . . , n,

and thus the effective condition number is an upper bound for the mixed condi-
tion numbers,

TLS (tq, b) =
‖tq‖ ‖b‖
‖x0‖

≤ SLS(A, b), q = 1, . . . , n. (17)

This equation can be combined with (5) and (16) to establish lower and upper
bounds for the mixed condition numbers,

SLS(A, b)
κ(A)

≤ TLS (tq, b) ≤ SLS(A, b) ≤ κLS(A, θ), q = 1, . . . , n, (18)

and thus these condition numbers can vary significantly if κ(A) � 1. These
inequalities contain condition numbers that are defined wholly or partly in the
normwise sense, and the componentwise condition numbers are not present. It is
clear that a finite upper bound for the componentwise condition numbers does
not exist because one or more of them may be infinite, and thus only lower
bounds, which are given in (14) and (16), can be established for them.
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The inequality (15) can be combined with (18) to show that there exists at
least one integer k such that

SLS(A, b)√
n

≤ TLS (tk, b) ≤ SLS(A, b),

which is a tight bound on the mixed condition number of x0,k.
The inequalities that have been obtained thus far consider the mixed and

componentwise condition numbers of individual components of x0. It is now
shown that they are constrained, such that the n components of each of these
condition numbers are not independent.

Consider initially the mixed condition numbers. Since

n∑
q=1

T 2
LS (tq, b) =

‖b‖2

‖x0‖2
n∑

q=1

‖tq‖2

=
‖b‖2

‖x0‖2
∥∥A†∥∥2

F

=
‖b‖2

‖x0‖2
n∑

k=1

1
σ2

k

= S2
LS (A, b)

n∑
k=1

(
σn

σk

)2

,

where ‖·‖F denotes the Frobenius norm, it follows that the sum of the squares
of the mixed condition numbers are constrained. Furthermore, since

1 ≤
n∑

k=1

(
σn

σk

)2

≤ n,

it follows that

SLS(A, b) ≤

√√√√ n∑
q=1

T 2
LS (tq, b) ≤

√
nSLS(A, b),

which are tight bounds on the square root of the sum of the squares of the mixed
condition numbers. It is readily verified that these bounds are consistent with
(15) and (17), and they therefore confirm that if the effective condition number
is large, there must be at least one component of x0 whose mixed condition
number is large.

This analysis can be repeated for the componentwise condition numbers,√√√√ n∑
q=1

R2
LS (tq, b) ≥ SLS(A, b).
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4 The Stability of the Condition Numbers

The discussions in the previous sections have shown that the componentwise and
mixed condition numbers provide the most refined information on the numerical
condition of the solution of the LS problem, and that both of them are superior to
the effective condition number, which is superior to κLS(A, θ). The progression

κLS (A, θ) → SLS(A, b) → TLS (tq, b) → RLS (tq, b) ,

is associated with an increase in information, from the (in general) non-sharp
upper bound κLS (A, θ) to the condition number RLS (tq, b) for each compo-
nent of x0. It is natural, therefore, to enquire why the condition numbers κ(A)
and κLS (A, θ) are used extensively in the literature, but the condition numbers
SLS(A, b), TLS (tq, b) and RLS (tq, b) are quoted much less frequently. The reason
for this omission is, at first thought, surprising because the derivation of these
condition numbers is not difficult.

A condition number must be numerically stable for it to be of practical value.
In particular, if ν is a generic condition number, then a change δν in ν due to a
change δb in b must satisfy

|δν|
|ν| ≈

‖δb‖
‖b‖ . (19)

The satisfaction, or otherwise, of this requirement is considered in Section 4.1
for the effective, mixed and componentwise condition numbers, and in Section
4.2 for κ(A) and κLS(A, θ). It is shown that the effective, mixed and componen-
twise condition numbers may be ill-conditioned, but that κ(A) and κLS(A, θ),
assuming cos θ ≈ 1, are well-conditioned.

4.1 The Effective, Mixed and Componentwise Condition Numbers

Equations (4) and (12) show, respectively, that the effective and mixed condition
numbers are ill-conditioned (well-conditioned) when x0 is ill-conditioned (well-
conditioned). This qualitative observation can be made more precise by noting
that the solution x0 + δx0 of the perturbed LS problem is given by

x0 + δx0 =
n∑

i=1

ci + δci

σi
vi,

and determining the form of this function for different values of β.
Figure 7 shows the variation of |ci| /σi and |ci + δci| /σi for different values of

β. It is adequate to consider only one of them in order to understand the shape
of these graphs because the analysis for the other two graphs follows similarly.
Consider Figure 7(iii), for which β > 1 and thus the discrete Picard condition
(10) is satisfied. It follows that the magnitude of the coefficients ci decays to
zero faster than the singular values σi, and thus if it is assumed that |δci| ≈ ε
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(a)

(b)

(i) β << 1

(a)

(b)

(ii) β = 1

(a)

(b)

(iii) β > 1

Fig. 7. The variation of (a) |ci| /σi and (b) |ci + δci| /σi for (i) β  1, (ii) β = 1 and
(iii) β > 1, where |ci| = σβ

i

where ε is a constant, there exists an integer p such that

|ci + δci|
σi

≈

⎧⎪⎨
⎪⎩

|ci|
σi

if i < p
|cp+δcp|

σp
if i = p

ε
σi

if i > p.

(20)

Similar analysis for the other values of β shows that

‖x0 + δx0‖ ≈
{

|cn|
σn

if 0 ≤ β � 1
ε

σn
if 1 ≤ β.

(21)

It follows from (4) and (6) that

SLS(A,U(c + δc) =
1
σn

‖c + δc‖
‖x0 + δx0‖

=
1
σn

√
‖c‖2 + 2

∑m
i=1 ciδci + ‖δc‖2

‖x0 + δx0‖
,

and since it is assumed that ‖δc‖ � ‖c‖ and (from above) |δci| ≈ ε, it follows
that

|δci| ≈ ε � ‖c‖√
m

.

Equation (21) therefore shows that

SLS(A,U(c + δc)) ≈
{

‖c‖
|cn| = SLS(A,Uc) if 0 ≤ β � 1
‖c‖
ε if 1 ≤ β,
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and thus as noted above, the effective condition number is ill-conditioned (well-
conditioned) when x0 is ill-conditioned (well-conditioned). It is clear that iden-
tical analysis can be performed for the mixed condition numbers.

The componentwise condition numbers are only considered qualitatively be-
cause, as noted in Section 3, x0 may be well-conditioned in the normwise sense
but one or more of its components may be ill-conditioned. Despite this qualifi-
cation, it follows immediately from (11) that RLS(tq, b) is ill-conditioned (well-
conditioned) when x0,q is ill-conditioned (well-conditioned), and thus some of the
qualitative features of the effective and mixed condition numbers are appropriate
for the componentwise condition numbers.

The results in this section show that (19) is not satisfied by the effective,
mixed and componentwise condition numbers. It follows that although they pro-
vide more detailed information than κ(A) and κLS (A, θ), their computational
implementation is problematic because incorrect estimates of the true numeri-
cal condition of x0 may be obtained. It is therefore appropriate to consider the
stability of κ(A) and κLS(A, θ), and this is discussed in the next section.

4.2 The Condition Numbers κ(A) and κLS(A, θ)

The condition number κ(A) is equal to σ1/σn, and its stability is therefore de-
fined by the stability with which the singular values of A can be computed.
The Wielandt-Hoffman theorem shows that the singular values of A are well-
conditioned with respect to perturbations in the elements of A [3]. This stability
marks a distinction between this condition number, and the effective, compo-
nentwise and mixed condition numbers.

The numerical stability of κLS(A, θ) follows easily from that of κ(A). In
particular, a well-formulated problem is one in which the angle θ between b and
Ax0 is small, in which case κLS(A, θ) ≈ κ(A). If, however, this angle is large,
then it may indicate that the problem is badly posed. This situation may arise,
for example, if inappropriate basis functions are used for regression.

This discussion shows that only κ(A) and κLS(A, θ) can be computed reliably
in the presence of errors, but they may overestimate, by several orders of magni-
tude, the true numerical condition of a linear algebraic equation. This suggests
that there is a tradeoff between the detail of the information that is revealed
by a condition number, and the reliability of its computational implementation.
The practical use of the effective, mixed and componentwise condition numbers
requires that numerically stable approximations to them be computed, and this
topic is considered in the next section.

5 Numerically Stable Approximations to Condition
Numbers

The development of regularised approximations to the effective, mixed and com-
ponentwise condition numbers requires that the cause of ill-conditioning be iden-
tified, and it is readily observed from Section 4.1 that this ill-conditioning is due
to division by the small singular values in the term ci/σi.
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It follows from (4) and (12) that the effective and mixed condition numbers
are ill-conditioned when x0 is ill-conditioned. Chan and Foulser [1] develop a
series of upper bounds for ‖x0‖ that avoid division by the small singular values.
In particular, since

n∑
i=1

(
ci

σi

)2

≥
n∑

i=n+1−k

(
ci

σi

)2

=
1

σ2
n+1−k

n∑
i=n+1−k

(
σn+1−k

σi

)2

c2i

≥ 1
σ2

n+1−k

n∑
i=n+1−k

c2i , k = 1, . . . , n, (22)

it follows from (4) that

SLS (A,Uc) =
1
σn

‖c‖
‖S†c‖

≤ σn+1−k

σn

( ∑m
i=1 c2i∑n

i=n+1−k c2i

) 1
2

:= ŜLS (A,Uc; k) , k = 1, . . . , n. (23)

These inequalities define a sequence of upper bounds of the effective condition
number, where

ŜLS (A,Uc;n) = κLS(A, θ),

and the bound that is the best approximation to the effective condition number
is given by the least upper bound of ŜLS (A,Uc; k),

ŜLS(A,Uc) = min
k=1,...,n

ŜLS (A,Uc; k) . (24)

It is clear that similar bounds can be developed for the mixed condition numbers.
These bounds appear to be numerically stable because division by the small

singular values is not performed, which suggests that the disadvantage of the
effective and mixed condition numbers is overcome. More careful analysis shows,
however, that there exist situations in which these bounds are ill-conditioned.
In particular, when b is perturbed to b + δb, (23) is perturbed to

ŜLS (A,U(c + δc); k) =
σn+1−k

σn

( ∑m
i=1(ci + δci)2∑n

i=n+1−k(ci + δci)2

) 1
2

,

and thus for k = 1 and k = 2

ŜLS (A,U(c + δc); 1) =

(∑m
i=1(ci + δci)2

) 1
2

|cn + δcn|
, (25)
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and

ŜLS (A,U(c + δc); 2) =
σn−1

σn

( ∑m
i=1(ci + δci)2

(cn + δcn)2 + (cn−1 + δcn−1)
2

) 1
2

, (26)

respectively. If the discrete Picard condition (10) is satisfied, (20) shows that
there exists an integer p such that

|ci + δci| ≈ |δci| for i > p,

and thus the bounds in (25) and (26) for k = 1 and k = 2, respectively, and more
generally those for values of k that satisfy k ≤ (n− p+ 1), are ill-conditioned. It
would appear, therefore, that the numerical problems of the effective and mixed
condition numbers that were discussed in Section 4.1 persist. A simple solution
to this problem can be achieved by applying a threshold η, such that values of
ci + δci below η are set equal to zero,

ci + δci =
{

0 if |ci + δci| ≤ η
ci + δci if |ci + δci| > η,

(27)

but the success of this method is dependent upon the value of η. Specifically, a
value that is too large will cause components of c + δc that have relatively little
noise to be filtered out, but a value that is too small will result in components
of c + δc that have a relatively large amount of noise to be retained.

Example 6. Consider the matrix A in Example 1 and the model (9). One hundred
right hand side vectors were selected by allowing β to be a random variable that
is uniformly distributed in the interval [0, . . . , 2]. For each value of β, that is, for
each right hand side vector, the least upper bound ŜLS(A,Uc) was calculated
using (24). The results are shown in Figure 8 and it is seen that ŜLS(A,Uc) is
an excellent approximation to the exact value of the effective condition number.

The experiment was repeated by perturbing, for each of the 100 experiments,
b to b + δb where the elements of δb are drawn from a zero mean Gaussian
distribution, such that ‖b‖ / ‖δb‖ = 105. The results are shown in Figure 9 and
it is seen that the noise degrades the upper bound approximation ŜLS(A,Uc),
such that it is now less than the exact value of the effective condition number
in many of the experiments.

The simple thresholding strategy (27) was then applied with different values
of η. In particular, if the exact value of the signal-to-noise ratio is τ , then the
amplitude of the noise is

‖δb‖ =
‖b‖
τ

≈ ‖b + δb‖
τ

, ‖δb‖ � ‖b‖ ,

or equivalently

‖δc‖ =
‖c‖
τ

≈ ‖c + δc‖
τ

, ‖δc‖ � ‖c‖ ,
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Fig. 8. The least upper bound (×) and the exact value (o) of the effective condition
number for 100 right hand side vectors selected at random. A logarithmic scale is used
for the condition numbers.

and if it is assumed that |δci| ≈ ε where ε is constant, then

ε ≈ ‖c + δc‖√
mτ

.

The thresholding strategy (27) becomes, therefore,

ci + δci =
{

0 if |ci + δci| ≤ ε
ci + δci if |ci + δci| > ε,

and thus the threshold ε is a function of τ , the exact value of the signal-to-noise
ratio. Figures 10-13 show the effect of thresholding on the least upper bound
ŜLS(A,U(c + δc)) for ε = 10−5, 10−4, 10−3 and 10−2, respectively. Comparison
of these four figures with Figure 9 shows that if ε ≥ 10−4, the strategy (27)
is effective in obtaining computationally reliable upper bounds of the effective
condition numbers. Furthermore, although the value ε = 10−4 appears to be the
optimum of the four values of ε that are shown, and the reciprocal of the exact
value of the signal-to-noise ratio is 1/τ = ‖δb‖ / ‖b‖ = 10−5, the application of
the threshold ε = 10−3, that is, a threshold that is two orders of magnitude
larger, yields acceptable estimates of the upper bound of the effective condition
numbers. �

This example shows that if the signal-to-noise ratio is known or can be esti-
mated, then a simple strategy can be implemented in order to obtain a computa-
tionally reliable upper bound for the effective condition number. It is clear that



A Comparison of Condition Numbers 315

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Fig. 9. The least upper bound (×) and the exact value (o) of the effective condition
number for the 100 right hand side vectors in Figure 8, in the presence of noise. A
logarithmic scale is used for the condition numbers.

the inequalities (22) can also be applied to the denominator of the expression of
the mixed condition numbers, and thus computationally reliable upper bounds
can also be obtained for these condition numbers. It may or may not be possible
to develop upper bounds for the componentwise condition numbers, but it is
noted that the inequalities (22) are not appropriate because they are valid for
the 2-norm, and therefore not sufficiently refined for componentwise measures.

6 Summary

Four condition numbers of the LS problem have been considered theoretically
and computationally, and it has been shown that the simplest measure κLS(A, θ)
can be computed reliably (assuming cos θ ≈ 1), but it may overestimate, possi-
bly by several orders of magnitude, the exact numerical condition of the solution
x0 of the LS problem. This disadvantage, which arises because this condition
number is defined as the maximum value of the error magnification, taken over
all vectors b and δb, is overcome by the effective, mixed and componentwise
condition numbers, because they provide more precise information on the ex-
act numerical condition of x0. Their computational implementation is, however,
problematic because they are ill-conditioned in some circumstances, but it was
shown that a simple procedure can be used to obtain computationally reliable
upper bounds of the effective and mixed condition numbers.



316 J.R. Winkler

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Fig. 10. The least upper bound (×) and the exact value (o) of the effective condition
number, for ε = 10−5. A logarithmic scale is used for the condition numbers.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Fig. 11. The least upper bound (×) and the exact value (o) of the effective condition
number, for ε = 10−4. A logarithmic scale is used for the condition numbers.
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Fig. 12. The least upper bound (×) and the exact value (o) of the effective condition
number, for ε = 10−3. A logarithmic scale is used for the condition numbers.
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Fig. 13. The least upper bound (×) and the exact value (o) of the effective condition
number, for ε = 10−2. A logarithmic scale is used for the condition numbers.
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Abstract. This paper presents an SVM-based learning system for in-
formation extraction (IE). One distinctive feature of our system is the
use of a variant of the SVM, the SVM with uneven margins, which is
particularly helpful for small training datasets. In addition, our approach
needs fewer SVM classifiers to be trained than other recent SVM-based
systems. The paper also compares our approach to several state-of-the-
art systems (including rule learning and statistical learning algorithms)
on three IE benchmark datasets: CoNLL-2003, CMU seminars, and the
software jobs corpus. The experimental results show that our system
outperforms a recent SVM-based system on CoNLL-2003, achieves the
highest score on eight out of 17 categories on the jobs corpus, and is
second best on the remaining nine.

1 Introduction

Information Extraction (IE) is the process of automatic extraction of information
about pre-specified types of events, entities or relationships from text such as
newswire articles or Web pages (see [10] for a comprehensive introduction to IE
and its applications). A lot of research has focused on named entity recognition,
a basic task of IE, which classifies proper nouns and/or numerical information
into classes such as persons, organizations, and dates. Effectively, most IE tasks
can be regarded as the task of recognizing some information entities within text.
IE can be useful in many applications, such as business intelligence, automatic
annotations of web pages with semantic information, and knowledge manage-
ment.

Over the past ten years, a number of machine learning techniques have been
used for IE and they have achieved state-of-the-art results, comparable to man-
ually engineered IE systems. When applying machine learning to IE, a learning
algorithm usually learns a model from a set of examples, grouped in documents,
which have been manually annotated by the user. Then the model can be used
to extract information from new documents. The accuracy of the learned model
usually increases with the number of training examples made available to the
system. However, as manual annotation is a time-consuming process, it is im-
portant for an IE system to have good performance on small training sets.

Machine learning algorithms for IE can be classified broadly into two main
categories: rule-based or relational learning on one hand, and statistical learning,

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 319–339, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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on the other. For each entity class, rule-based methods induce a set of rules from
a training set, while statistical methods learn statistical models or classifiers.
Some systems based on rule or relational learning are SRV [16], RAPIER [2],
WHISK [26], BWI [18], (LP )2 [7], and SNoW [23]). Some example statistical
systems are HMMs [14], Maximal Entropy [4], and SVM [19] or [22].

These IE systems also differ from each other in the features that they use.
Some use only basic features such as token string, capitalization, and token type
(word, number, etc.), e.g. BWI. In addition, others use linguistic features such
as part-of-speech, semantic information from gazetteer lists, and the outputs of
other IE systems (most frequently general purpose named entity recognizers). A
few systems also exploit genre-specific information such as document structure,
see e.g. [4]. In general, the more features the system used, the better performance
it could achieve.

One of the most successful machine learning methods for IE is Support Vector
Machine (SVM), which is a general supervised machine learning algorithm. It
has achieved state-of-the-art performance on many classification tasks, including
named entity recognition (see e.g. [19], [22]). For instance, [19] compares three
commonly used methods for named entity recognition – SVM with quadratic
kernel, maximal entropy, and a rule based learning system, and shows that the
SVM-based system outperforms the other two. In our view, this comparison [19]
is more informative than the comparison in, e.g., the CoNLL-2003 shared task
(see [25]), because the former uses both the same corpus and the same features
for all three systems, while in the later different systems used the same corpus
but different features1. As already discussed above, more features usually result
in better performance and therefore, it is important to use the same or similar
features on the same dataset when comparing different algorithms.

This paper describes an SVM-based learning algorithm for IE and presents
detailed experimental results. In contrast to similar previous work, our SVM
model (see Section 2) uses an uneven margins parameter which has been shown
[21] to improve the performance for document categorization (especially for small
categories). Detailed experiments investigating different SVM parameters on
three benchmark datasets were carried out (see Section 4.1). The experimen-
tal datasets were chosen to enable thorough comparison between our approach
and other state-of-the-art learning algorithms (see Section 4.2). The learning
curve of the algorithm was also evaluated by providing a small number of initial
examples and then incrementally increasing the size of the training data (see
Section 4.3). Section 5 covers related work.

2 The SVM Based IE System

Due to named entities often spanning more than one word, a classifier-based
IE system needs to be designed to cope with this problem. In our SVM-based
1 The Pascal Challenge in evaluation of machine learning methods for IE aims to

provide a corpus and a pre-defined set of features, so different algorithms can be
compared better (http://nlp.shef.ac.uk/pascal/).
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system, called GATE-SVM, two SVM classifiers were trained for each entity
type – one classifier to recognize the beginning of the entity and another one
for the end. One word entities are regarded as both start and end. In contrast,
[19] trained four SVM classifiers for each entity type – besides the two SVMs
for start and end (like ours), also one for middle words, and one for single word
entities. They also trained an extra SVM classifier to recognize words which do
not belong to any named entity. Another approach is to train an SVM classifier
for every possible transition of tags [22]. In this case, at least five classifiers
need to be trained for every entity type: two classifiers for the two transitions
between beginning and internal words, another two for the transitions between
a beginning word and a non-entity word, and one for the transition from an
internal word to a non-entity word. This approach also needs extra classifiers for
the transitions between two entity types. Therefore, depending on the number
of entities, this approach may result in a large number of SVM classifiers. Hence,
in comparison, our approach is simpler than the other two SVM-based systems,
in terms of requiring the lowest the number of SVM classifiers.

The rest of this section describes the other features of our system, namely
the SVM algorithm, and the pre-processing and post-processing procedures.

2.1 The SVM with Uneven Margins

The GATE-SVM system uses a variant of the SVM, the SVM with uneven mar-
gins [21], which has a better generalization performance than the original SVM
on imbalanced dataset where the positive examples are much less than the nega-
tive ones. The original SVM treats positive and negative examples equally such
that the margin of the SVM hyperplane to negative training examples is equal
to the margin to positive training examples. However, for imbalanced training
data where the positive examples are so rare that they are not representative
of the genuine distribution of positive examples, a larger positive margin than
the negative one would be beneficial for the generalization of the SVM classifier
(see detailed discussion in [21]). Therefore, [21] introduced an uneven margins
parameter into the SVM algorithm. The uneven margins parameter is the ratio
of the negative margin to the positive margin. By using this parameter the un-
even margins SVM is able to handle imbalanced data better than the original
even margins SVM model.

The uneven margins parameter has been shown previously to facilitate doc-
ument classification on unbalanced training data (see [21]). Given that IE clas-
sification tasks, particularly when learning from small data sets, often involve
imbalanced data (refer to Table 3 below), we expected to gain more benefits from
SVM with uneven margins over the original SVM algorithm, which is confirmed
in our experimental results presented in Section 4.

Formally, given a training set Z = ((x1, y1), . . . , (xm, ym)),where xi is the
n-dimensional input vector and yi (= +1 or −1) its label, the SVM with uneven
margins is obtained by solving the quadratic optimization problem:

minimisew, b, ξ 〈w,w〉+ C

m∑
i=1

ξi
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subject to 〈w,xi〉+ ξi + b ≥ 1 if yi = +1
〈w,xi〉 − ξi + b ≤ −τ if yi = −1
ξi ≥ 0 for i = 1, ...,m

In these equations, τ is the uneven margins parameter which is the ratio
of the negative margin to the positive margin in the classifier and is equal to
1 in the original SVM. Like other parameters of learning algorithms, the value
of τ can be empirically determined by, for example, n-fold cross-validation on
training set or hold-out development set. Moreover, from Table 5 in Section 4
we can see that the performance of the uneven margins SVM is not sensitive to
the value of the uneven margins parameter. Therefore, a reasonable estimation
of the τ can help the uneven margins SVM to achieve significantly better results
than the original SVM model on imbalanced data.

The solution of the quadratic optimization problem above can be obtained by
solving a related SVM problem (see [21]). In other words, it is not necessary to
solve the uneven margins SVM problem directly. Instead, we can solve a corre-
sponding standard SVM problem first by using an existing SVM implementation
and then obtain the solution of uneven margins SVM through a transformation.

2.2 The Feature Vector Input to the SVM

When statistical learning methods are applied to IE tasks, they are typically
formulated as classification, i.e., each word in the document is classified as be-
longing or not to one of the target classes (e.g., named entity tags). The same
strategy is adopted in this work, which effectively means that each word is re-
garded as a separate instance by the SVM classifier. First of all, each document
is processed using the open-source ANNIE system, which is part of GATE2 [11].
This produces a number of linguistic (NLP) features. The features include to-
ken form, capitalization information of words, token kind, lemma, part-of-speech
tag, semantic classes from gazetteer lists, and named entity type according to
ANNIE’s rule-based recognizer. Table 1 shows an example of text with its as-
sociated NLP features. Note that a token may not have all the NLP features
considered, e.g. the token “Time” did not have the Lookup feature because it
does not occur in ANNIE’s gazetteer lists.

Given this input, a feature vector was derived from the NLP features of each
token in the following way:

1. All possible features from the training documents are collected and indexed
with a unique identifier, and each dimension of the feature vector corresponds
to one feature (e.g. a given token string such as “Time” or a part-of-speech
(POS) category such as “CD”).

2. For each token, each component of the feature vector that corresponds to the
value of the respective NLP feature are set to 1, and all other components
are set to 0.

2 Available from http://www.gate.ac.uk/
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Table 1. NLP Features for the text sample “Time: 3:30 PM”. The features are token
form, capitalization information (Case), simple token kind (Tokenkind), part-of-speech
(Pos), semantic classes from gazetteer lists (Lookup), and named entity types according
the ANNIE. The Unknown type for word “Time” meant that ANNIE identified the
word “Time” as a named entity but could not recognize its type of entity.

Token Case Tokenkind Lemma Pos Lookup Entity
Time upperInitial word time NNP Unknown

: punctuation : :
3 number 3 CD Time
: punctuation : : Time

30 number 3 CD Time
PM allCaps word pm NNP time Time

Table 2 presents the feature vectors for the tokens listed in Table 1. We
can see that the vectors are very sparse – only several components out of an
approximately 20000 dimensional vector are non-zero.

Table 2. Feature vectors for the tokens of text “Time: 3:30 PM”. The vectors are
presented in a compact form, i.e. only the indexes and values of all nonzero components
are shown. Refer to Table 1 for the NLP features.

Token Feature Vector
Time 4835:1 11811:1 11815:1 19009:1 19697:1 19780:1

: 399:1 11816:1 12213:1 19682:1
3 187:1 11818:1 12001:1 19685:1 19778:1
: 399:1 11816:1 12213:1 19682:1 19778:1

30 188:1 11818:1 12002:1 19685:1 19778:1
PM 3621:1 11812:1 11815:1 17292:1 19697:1 19752:1 19778:1

Since in information extraction the context of the word is usually as impor-
tant as the word itself, the SVM input vector needs to take into account features
of the preceding and following words, in addition to those of the given word. In
our experiments the same number of left and right words was taken as a context.
In other words, the current word was at the centre of a window of words from
which the features are extracted. This is called a window size. Therefore, for
example, when the window size is 3, the algorithm uses features derived from 7
words: the 3 preceding, the current, and the 3 following words. Due to the use
of a context window, the SVM input vector is the combination of the feature
vector of the current word and those of its neighboring words.

As the input vector of the SVM combines the feature vectors of all words
in the context window, these vectors can be weighted differently, depending on
the relative importance of the neighboring words. In this work, two weighting
schemes for the feature vectors from neighboring words were investigated. The
first is the commonly used equal weighting, which keeps every nonzero compo-
nent of the feature vector as 1 in the combined input vector, i.e., treats all
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neighboring words as equally important. The second weighting scheme is the
reciprocal scheme, which weights the surrounding words reciprocally to the dis-
tance to the word in the centre of the current window, reflecting the intuition
that the nearer a neighboring word is, the more important it is for classifying
the given word. Formally it means that the nonzero components of the feature
vector corresponding to the jth right or left neighboring word are set to be equal
to 1/j in the combined input vector. Therefore, we also refer to this scheme as
1/j weighting.

2.3 Post-processing the Results from the SVM Classifiers

As we train two different SVM classifiers to identity the start or end word for each
target class, some post-processing is needed to combine these into a single tag.
Therefore, our system has a module with three different stages to post-process
the results from the SVM classifiers:

– The first stage uses a simple procedure to guarantee the consistency of the
recognition results. It scans a document to remove start tags without match-
ing end tags and end tags without preceding start tags.

– The second stage filters out candidate entities from the output of the first
stage, based on their length. Namely, the tags of a candidate entity are
removed if the entity’s length (the number of words) is not equal to the
length of any entity of the same type in the training set (a similar method
was used in [18]).

– In contrast to the above two stages where each candidate entity is considered
separately, the third stage puts together all possible tags for a given word and
chooses the best one. In detail, the output x of the SVM classifier (before
thresholding) is first transferred into a probability via the Sigmoid function
s(x) = 1/(1 + exp(−βx)) where β is set to 2.0 (also see [19] and [22]). Then
a probability for an entity candidate is computed as s(xs) ∗ s(xe), where xs

and xe are the outputs of the SVM classifier for the start and end words
of the candidate, respectively. Finally, for each given word, the probabilities
for all possible tags are compared to each other and the tag with the highest
probability Ph is assigned if Ph is greater than 0.25. Otherwise no tag is
assigned to the word.

The three stages of the procedure can be applied sequentially to process the
outputs of the classifiers. On the other hand, we can also obtain several post-
processing procedures which consist of, e.g. only the first, or the first and the
second, or all three stages. We will compare the different kinds of post procedures
in Section 4.1. Note that both [19] and [22] used a Viterbi search algorithm as a
post-procedure for their SVM classifiers, which corresponds to applying the first
and third stages of our algorithm.

3 The Experimental Datasets

The system was evaluated on three corpora covering different IE tasks – named
entity recognition (CoNLL-2003) and template filling or scenario templates [24]
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(seminars and jobs corpora). There are several reasons for choosing these cor-
pora. Firstly, CoNLL-2003 provides the most recent detailed evaluation results
of machine learning algorithms on named entity recognition. Secondly, the sem-
inars and jobs corpora have also been used recently by many learning systems,
both wrapper induction and more linguistically oriented ones (see Section 5 for a
detailed discussion). Thirdly, the CONLL-2003 corpus differs from the other two
corpora in two important aspects: (i) in CONLL-2003 there are many entities per
document, whereas the jobs and seminar corpora have only a small number per
document; (ii) CONLL-2003 documents are mostly free text, whereas the other
two corpora contain semi-structured documents. Therefore, the performance of
our SVM algorithm was evaluated thoroughly on these three corpora as our
goal was to design a versatile approach, with state-of-the-art performance both
on domain-independent IE tasks (e.g., named entity recognition) and domains-
specific ones (e.g., template filling).

In more detail, the first corpus is the English part of the CoNLL-2003 shared
task dataset — language-independent named entity recognition3. This corpus
consists of 946 documents for training, 216 documents for development (e.g.,
tuning the parameters in learning algorithm), and 231 documents for evaluation
(i.e., testing), all of which are news articles taken from the Reuters English
corpus (RCV1) [20]. The corpus contains four types of named entities — person,
location, organization and miscellaneous names.

The other two corpora are the CMU seminar announcements and the software
job postings4, in both of which domain-specific information is extracted into a
number of slots. The seminar corpus contains 485 seminar announcements and
four slots – start time (stime), end time (etime), speaker and location of the
seminar. The job corpus includes 300 computer related job advertisements and
17 slots encoding job details, such as title, salary, recruiter, computer language,
application, and platform.

Table 3 shows the statistics for the CoNLL-2003, seminars and jobs datasets,
respectively. As can be seen from that table, the non-annotated words are much
more than the annotated words, particularly for domain-specific datasets like
seminar announcements and software job postings. In other words, all three
corpora are imbalanced datasets where the number of positive examples is much
lower than the negative ones.

Machine learning systems typically separate the corpus into training and
test sets. Since the CoNLL-2003 corpus already has the training, development
and test set pre-specified, the system is trained on the training set, different
experimental settings are tested on the development set, and the optimal ones
are used in the run on the test set in order to obtain the performance results,
which are then used for comparison to other systems.

The other two corpora do not provide such different sets, therefore training
and testing need to be carried out differently. In our experiments we opted for
splitting the corpora into two equal training and test sets by randomly assigning

3 See http://cnts.uia.ac.be/conll2003/ner/
4 Available from http://www.isi.edu/info-agents/RISE/repository.html.
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Table 3. Number of examples for each entity/slot type, together with the number of
non-tagged words, in CoNLL-2003 corpus, seminars announcements, and software jobs
postings, respectively.

Conll03 LOC MISC ORG PER Non-entity
Training set 7140 3438 6321 6600 191627
Test-a set 1837 922 1341 1842 47926
Test-b set 1668 702 1661 1617 43654
Seminars Stime Etime Speaker Location Non-entity

980 433 754 643 157647
Jobs Id Title Company Salary Recruiter State

304 457 298 141 312 462
City Country Language Platform Application Area
659 345 851 709 590 1005

Req-years-e Des-years-e Req-degree Des-degree Post date Non-entity
166 43 83 21 302 127302

documents to one or the other5. In order to obtain more representative results,
we carried out several runs and the final results were obtained by averaging
the results from each run. Many of the learning systems evaluated on these
corpora used the same approach and we adopted it to facilitate comparison (see
Section 4.2).

All corpora were also pre-processed with the open-source ANNIE system [11],
in order to obtain the linguistic (NLP) features used in the SVM input vector, as
discussed in Section 2.2 above. These features are used in addition to information
already present in the documents such as words and capitalization information.
The NLP features are domain-independent and include token kind (word, num-
ber, punctuation), lemma, part-of-speech (POS) tag, gazetteer class, and named
entity type according to ANNIE’s rule-based recognizer6. The following section
discusses the experimental results on the three corpora.

4 Experimental Results

As already discussed in Section 2, two SVM classifiers are trained for each entity
or slot filler, one for the start and one for the end words. The resulting models are
then run on the test set and the post-processing procedures described in Section
2 are applied. The algorithm described in [21] is used to obtain the solution of
the SVM with uneven margins by solving an SVM problem. More specifically,
the SVM package SVMlight version 3.57 is used for solving the SVM problem.
Unless otherwise stated, the default values of the parameters in SVMlight 3.5
are used.
5 As the total number of documents in the seminar corpus is 485, we randomly split

the dataset into 243 training documents and 242 testing ones.
6 We also investigated the effect of the different NLP features, but due to space limi-

tations the results will be included in another paper.
7 Available from http://www.joachims.org/svm light
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The results below are reported using the F1-measure, which is the har-
monic mean of precision and recall. In other words, F1 = (2 ∗ precision ∗
recall)/(precision + recall), where precision is the percentage of correct en-
tities found by the system and recall is the percentage of entities in the test set
which are found by the system. A tag is considered correct if it matches exactly
the human-annotated tag, both in terms of its type and its start and end offset
in the document.

The overall performance of the algorithm on a given corpus can be obtained
in two different ways. One is the so called macro-averaged F1, which is the mean
of F1 of all the entity types or slots in the corpus. The other is the micro-averaged
measure8, obtained by adding together the recognition results on all entity types
first and then computing precision, recall, and F-measure. Some researchers ar-
gue that the macro-averaged measure is better than the micro-averaged one (see
e.g. [28]), because the micro-averaged measure can be dominated by the larger
classes so that it reflects less the performance of the algorithm on smaller classes.
On the other hand, if all classes are of a comparable size, as is often the case
in IE datasets, then the macro-averaged measure is not very different from the
micro-averaged one. Therefore, we use macro-averaged F-measure in Section 4.1
where an overall measure of the system’s performance is needed, e.g., for the
purpose of establishing the impact of different parameters on the system’s per-
formance. In Section 4.2 the macro-averaged F-measure is used for comparing
the overall performance of our system with the seminars and jobs datasets, while
the micro-averaged F-measure is used on the CoNLL-2003 dataset since it was
used in the CoNLL-2003 shared task.

4.1 Influence of Different Parameters on the Algorithm’s
Performance

First of all, we carried out some preliminary experiments to determine the opti-
mal parameter settings for each of three datasets. In order to avoid testing each
possible setting against all others, the different settings of the parameters are
investigated sequentially. The (possibly only slightly advantageous) best setting
obtained for one parameter from the current experiment was used in subsequent
ones.

The first group of experiments is for different sizes of the context window,
while linear kernel and all NLP features are used. Then other parameters are
investigated sequentially, namely the impact of SVM kernels (linear, quadratic
and cubic), two values of the uneven margin parameter τ (1.0 and 0.4), differ-
ent combinations of NLP features, two weighting schemes for the features from
neighboring tokens, and finally three post-processing procedures derived from
the three post-processing stages discussed in Section 2. In this way, the optimal
settings listed in Table 4 were obtained (note the difference for the different
corpora).

8 See http: //www.itl.nist.gov/iaui/894.02/related projects/muc/muc sw/muc sw
manual.html
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Table 4. The optimal settings of system for the three datasets, obtained by the se-
quentially optimal experiments. For NLP features “all” means all the NLP features
obtained from the ANNIE system. For post-processing “all” means that all the three
stages of the procedure are used.

Setting window size SVM kernel τ NLP features Weighting Post-processing
Conll03 2 quadratic 0.4 all except POS 1/j all
Seminars 5 quadratic 0.4 all 1/j all
Jobs 3 linear 0.4 all except POS 1/j all

It should be noted that while keeping the number of experiments down, such
sequential optimization may not result in the most optimal parameter settings.
For instance, the optimal window size from the first group of experiments using
linear kernel may not be optimal for the later experiments using quadratic kernel.
Hence, the optimal setting obtained at each stage may not be the global optimal
value, although we believe the differences to be quite small.

Next, a series of experiments was conducted to investigate the influence of
the different parameters. In these experiments, we used different settings of one
parameter and adopted the values of all other parameters, as presented in Table
4 for each dataset. Due to space limitations, this paper focuses on the experi-
mental results for the unique features in our system, namely the uneven margins
parameter τ , the reciprocal weighting scheme, and the post-processing proce-
dures.

As already discussed above, on the CoNLL-2003 dataset, the system is trained
on the train set and the results are reported on the development set. Each of
other two datasets is split randomly in two, with one partition used for training
and the other for testing, and the results are averaged over ten runs.

Uneven Margins Parameter. Our system uses the uneven margins SVM
model, while other SVM-based systems for IE use the original SVM algorithm
with even margins (see e.g. [19] and [22]). As discussed in Section 2, the un-
even margins parameter τ is the ratio of the negative margin to the positive
margin. If τ = 1, the uneven margins SVM is equivalent to the original SVM
model. As already discussed, the uneven margins parameter helps the SVM han-
dle imbalanced training sets, i.e., sets where the positive training examples are
much rarer compared to the negatives ones (a common problem in classification
for IE).

Table 5 presents the results for different values of uneven margins parameter
for the three datasets. Firstly, the SVM with uneven margins (τ < 1.0) performs
statistically significantly better than the original SVM (τ = 1.0) on the two
datasets – Seminars and Jobs. On the other hand, the uneven margins model
obtains only marginal improvements over the even margins model on the CoNLL-
2003 data. This is because the classification problems on the first two corpora
are much more imbalanced than those on the CoNLL-2003 dataset. The more
imbalanced a classification problem is, the more helpful the uneven margins
parameter is. Also see the results for small training sets in Section 4.3. Secondly,
it can be seen that the results for the τ in an interval (e.g. the interval (0.4, 0.6))
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Table 5. Results for different settings of uneven margins parameter of the SVM: macro-
averaged F1 (%) on the three datasets. The standard deviation is shown in parenthesis,
indicating the statistical significances of the results. The best performance figures on
each dataset appear in bold.

τ 1.0 0.8 0.6 0.4 0.2 0.0
Conll03 89.0 89.6 89.7 89.2 85.3 65.6
Seminars 81.7(±0.6) 84.0(±0.7) 85.8(±0.8) 86.2(±0.8) 82.6(±1.0) 55.4(±1.4)
Jobs 79.0(±1.4) 79.9(±1.2) 81.0(±0.9) 80.8(±1.0) 79.0(±1.3) 57.7(±1.5)

Table 6. Two weighting schemes: macro-averaged F1 (%) on the three datasets. In
bold are the best performance figures for every dataset.

Equal weighting 1/j weighting
Conll03 88.4 89.2
Seminars 85.5(±1.0) 86.2(±0.8)
Jobs 80.5(±1.0) 80.8(±1.0)

are quite similar, showing that the performance is not particularly sensitive to
the value of τ . Finally, τ = 0.6 achieves slightly better results than τ = 0.4
on the Jobs data. However, due to the small difference, all other experiments
presented in this paper preserve the experimental settings from Table 4, meaning
that τ = 0.4 is used on both the Seminar and Jobs datasets.

Two Weighting Schemes. We compared two weighting schemes for combin-
ing the features from surrounding words – the commonly used equal weighting
and the reciprocal weighting of features from neighboring words (discussed in
Section 2.2 above). Table 6 presents the results of the two weighting schemes on
the three datasets. While the reciprocal scheme produces slightly better results
than equal weighting on all the three datasets, the difference is not statistically
significant.

Post-processing Procedures. As discussed in Section 2.3, a three-stage post-
processing procedure is used to combine the results of the SVM classifiers. In
brief, in the first stage filters out the spurious start or end tags. The second
removes entities with length not equal to the length of any example tag in
the training set. The third stage outputs the category with the highest prob-
ability. Based on these three different filtering strategies, three post-processing
procedures were experimented with: the first strategy only; the first and second
strategies; and finally all three in sequence. In the first and second procedures,
if one piece of text is assigned more than one tag, then the last tag according to
the tag order in Table 3 is assigned.

Table 7 presents the results before post-processing as well as the results for
the three procedures on the three corpora. Compared to the results with no post-
processing, the results are improved significantly by post-processing. However,
procedures 2 and 3 only obtain slightly better results than their previous stages.
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Table 7. Comparison of the results without and with the post-processing procedures:
macro-averaged F1 (%) on the three datasets. Proc1, Proc2 and Proc3 denote respec-
tively the three post-processing stages. In bold are the best performance figures for
every dataset.

No post-processing Proc1 Proc2 Proc3
Conll03 87.5 89.0 89.1 89.2
Seminars 81.7(±1.0) 85.5(±0.9) 85.7(±0.9) 86.2(±0.8)
Jobs 77.0(±0.7) 79.9(±0.9) 80.3(±0.9) 80.8(±1.0)

4.2 Comparison to Other Systems

This section compares our system to other machine learning approaches on the
three datasets. Since our system uses the NLP features produced by GATE and
the learning algorithm based on SVM, we call our system GATE-SVM. In the
experiments described in this subsection, we used similar settings to those in the
other systems, in order to enable a fair comparison.

The significance boundaries of the results on the CoNLL-2003 corpus, pre-
sented in this paper, are estimated via bootstrap sampling method [25] and can
be used to determine if a result is significantly different than all others.

For the other two datasets, the significance boundaries of previous results
are not available. Since we ran ten experiments on each of the two datasets,
the standard deviations from the results of the ten experiments are used as the
significance measure in the comparison to other systems.

Named Entity Recognition. The performance of GATE-SVM on named en-
tity recognition is evaluated on the CoNLL-2003 dataset. Since this set comes
with development data for tuning the learning algorithm, different settings were
tried in order to obtain the best performance on the development set. The differ-
ent SVM kernel types, window sizes, and values of the uneven margin parameter
τ were tested. The results showed that quadratic kernel, window size 4 and
τ = 0.5 produce best results on the development set. These optimal values are
slightly different from those obtained in Section 4.1, which shows that the val-
ues for learning parameters selected through sequential optimization may not be
globally optimal. The 1/j weighting scheme and all three post-processing stages
are used.

Table 8 presents the results of our system on the CoNLL-2003 dataset, to-
gether with the results of the top system in the CoNLL-2003 share task evalua-
tion [13] and another participating SVM-based system [22], which are taken from
the summary paper [25]. The results of our systems are given using two different
settings in order to make a fairer comparison to the SVM based system entered
in the shared task. GATE-SVM-1 uses all NLP features obtained from ANNIE,
except part-of-speech information. The only difference between GATE-SVM-1
and GATE-SVM-2 is that GATE-SVM-2 does not use the semantic informa-
tion from ANNIE’s gazetteer lists. Therefore, all types of NLP features used
by GATE-SVM-2 were also used by the participating SVM-based system. The
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Table 8. Comparison to other systems on the CoNLL-2003 shared task: F -measure (%)
on each entity type and the overall micro-averaged F-measures. The macro-averaged
F-measure (MA F1) is also included for comparison. Test-a denotes the development
set and test-b is as the test set. The only difference between GATE-SVM-1 and GATE-
SVM-2 is in the NLP feature used (see text). The best performance figures for each
entity type and overall appear in bold.

System test set LOC MISC ORG PER MA F1 Overall
GATE-SVM-1 test-a 93.70 86.13 87.00 93.03 89.96 90.83

test-b 89.25 77.79 82.29 90.92 85.06 86.30
GATE-SVM-2 test-a 93.46 86.36 86.76 92.24 89.70 90.49

test-b 89.20 77.66 81.60 90.68 84.78 86.00
Best one test-a 96.12 89.06 90.24 96.60 93.01 93.87

test-b 91.15 80.44 84.67 93.85 87.53 88.76±0.7
Participating test-a 93.75 86.02 85.90 93.91 89.90 90.85
SVM Based System test-b 88.77 74.19 79.00 90.67 83.16 84.67±1.0

results of both GATE-SVM-1 and GATE-SVM-2 are significantly better the par-
ticipating SVM-based system. However, our results are significantly worse than
the best result, which was obtained by combining the outputs of four different
classifiers and other information.

Template Filling. The seminar corpus has been used to evaluate quite a few
learning systems. Those include rule learning approaches such as SRV [17], Whisk
[26], Rapier [2], BWI [18], SNoW [23] and (LP )2 [7], as well as statistical learning
systems such as HMM [14] and maximum entropy (MaxEnt) [4]. See Section 5
for more details.

The major problem with carrying out comparisons on the seminar corpus
is that the different systems used different experimental setups. For instance,
SRV, SNoW and MaxEnt reported results averaged over 5 runs. In each run
the dataset was randomly divided into two partitions of equal size – one used
for training and one for testing. Furthermore, SRV used a randomly selected
third of the training set for validation. WHISK’s results were from 10-fold cross
validation on a randomly selected set of 100 documents. Rapier’s and (LP )2’s
results were averaged over 10 runs, instead of the 5 runs used in SRV, SNoW
and MaxEnt. Finally, BWI’s and HMM results were obtained via standard cross
validation.

The GATE-SVM results reported here are the average over ten runs, following
the methodology of Rapier and (LP )2. Table 9 presents the results of our system
on seminar announcements, together with the results of the other systems. As far
as it was possible, we use the same features as the other systems to enable a more
informative comparison. In particular, the results listed in Table 9, including
our system, did not use any gazetteer information and named entity recognizer
output. The only features in this case are words, capitalization information,
token types, lemmas, and POS tags. The settings for the SVM parameters were
taken from Table 4, i.e., window size 5, quadratic kernel, and τ = 0.4.
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The F1 measure for each slot was computed together with the macro-averaged
F1 for the overall performance of the system. Note that the majority of systems
evaluated on the seminars and jobs corpora only reported per slot F-measures,
without overall results. However, an overall measure is useful when comparing
different systems on the same dataset. Hence, we computed the macro-averaged
F1 for the other systems from their per-slot F1.

Table 9. Comparison to other systems on CMU seminar corpus: F1 (%) on each slot
and overall performance (macro-averaged F1). Standard deviation for the MA F1 of
our system is presented in parenthesis. The best results for each slot and the overall
performance appear in bold font.

Speaker Location Stime Etime MA F1

GATE-SVM 69.0 81.3 94.8 92.7 84.5(±0.8)
(LP )2 77.6 75.0 99.0 95.5 86.8
SNoW 73.8 75.2 99.6 96.3 86.2
MaxEnt 65.3 82.3 99.6 94.5 85.4
BWI 67.7 76.7 99.6 93.9 84.6
HMM 71.1 83.9 99.1 59.5 78.4
Rapier 53.1 73.4 95.9 94.6 79.1
Whisk 18.3 66.6 92.6 86.1 65.7
SRV 56.3 72.2 98.5 77.9 76.0

Table 9 shows that the best results on the different slots are achieved by
different system and that the best overall performance is achieved by the (LP )2.
The GATE-SVM did not perform as well as the best results on the Seminar
data. But it still outperformed many other systems.

However, if information from the ANNIE gazetteer and named entity recog-
nizer is used as additional features, then the macro-averaged F1 for GATE-SVM
is 0.862, which is better than the 0.857 for (LP )2 using the same features (see
[7]). While this is still slightly worse than the 0.872 of the maximum entropy
system (see [4]), a direct comparison between the GATE-SVM and that system
cannot be made. This is due to our system just using general NLP features
while [4] used genre-specific features (see Section 5 for further details). Further-
more, GATE-SVM’s parameter settings were not optimized specifically for this
corpus (see the discussions about optimizing the experimental settings for the
CoNLL-2003 dataset above).

On the jobs postings corpus, GATE-SVM is compared to two rule learning
systems, Rapier [2] and (LP )2 [7], which are among the few evaluated on this
dataset.

Again, in order to make the comparison as informative as possible, we
adopted the same settings in our experiments as those used by the system which
reported the highest results on this dataset, i.e., (LP )2 [8]. In particular, the re-
sults are obtained by averaging the performance in ten runs, using a random half
of the corpus for training and the rest for testing. In contrast, Rapier’s results
were obtained via 10-fold cross validation over the entire dataset, thus making
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Table 10. Comparison to other systems on the jobs corpus: F1 (%) on each entity
type and overall performance as macro-averaged F1. Standard deviation for the MA
F1 of our system is presented in parenthesis. The highest score on each slot and overall
performance appears in bold.

Slot GATE-SVM (LP )2 Rapier Slot GATE-SVM (LP )2 Rapier
Id 97.7 100 97.5 Platform 80.1 80.5 72.5
Title 49.6 43.9 40.5 Application 70.2 78.4 69.3
Company 77.2 71.9 70.0 Area 46.8 53.7 42.4
Salary 86.5 62.8 67.4 Req-years-e 80.8 68.8 67.2
Recruiter 78.4 80.6 68.4 Des-years-e 81.9 60.4 87.5
State 92.8 84.7 90.2 Req-degree 87.5 84.7 81.5
City 95.5 93.0 90.4 Des-degree 59.2 65.1 72.2
Country 96.2 81.0 93.2 Post date 99.2 99.5 99.5
Language 86.9 91.0 81.8 MA F1 80.8(±1.0) 77.2 76.0

it impossible to adopt a unified approach. As in the previous experiment, only
basic NLP features are used: word, capitalization information, token types, and
lemmas. The parameter values of window size 3, linear kernel and τ = 0.4) are
used here. The macro-averaged F1 for the other two systems is computed for
overall performance comparison.

Table 10 presents the results of our system as well as the results of the other
two systems on the Jobs corpus. GATE-SVM achieves the best results among all
three on eight out of the 17 slots and the second best results on the remaining
nine. Overall, the macro-averaged F1 of GATE-SVM is significantly better than
the other two systems.

4.3 Information Extraction from Small Training Sets

The application of SVM (or other supervised learning algorithms) to IE requires
a manually annotated training set. Since manual annotation is a time-consuming
process. learning from small data sets is highly desirable.

Consequently, we evaluated the learning algorithm on a growing number of
examples. For both the seminar and jobs corpora, a small number of documents
from the corpus were selected randomly as the training set and the remaining
ones were used for testing. For the CoNLL-2003 dataset the training documents
were chosen randomly from the training set and the results are reported on the
development set. In order to factor out randomness of results, the mean of ten
runs is reported. The same features and system parameters were used on each
of the three datasets as those in Section 4.2.

Figure 1 shows the learning curves of the SVM models with and without
uneven margins on the three datasets. The 95% confidence intervals for the data
points are also shown for the Seminars and Jobs datasets. System performance
improves consistently as more training documents become available. In addition,
the uneven margins SVM model demonstrates clearly better results than the
original SVM, in particular on a small number of training documents.
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Fig. 1. Learning curves for overall F1 with a growing number of training documents
on the three datasets. On each dataset the uneven margins SVM is compared to the
original SVM model. For the Seminar and Jobs datasets, the error bar at a data point
show the 95% confidence interval derived from the standard deviations. For clarity, we
just show the confidence intervals for one curve in the Jobs graph – the confidence
intervals are similar for another curve.

Table 11. Different numbers of documents for training: macro-averaged F1 (%) on
seminars dataset for every entity type

10 20 30 40 50 60 70
stime 82.4 86.6 88.9 90.5 91.4 92.0 92.4
etime 70.7 80.6 85.9 88.1 88.5 89.2 90.6
speaker 30.7 42.4 55.6 60.6 63.4 65.5 65.9
location 48.4 58.6 63.7 67.0 69.6 69.9 70.9

Table 11 shows that some types of entities can be learned faster than others,
due to their more fixed internal structure. For example, start and end times
can be learned from as little as 10 documents, while at least 60 documents are
required to reach similar performance on speaker and location. When interpret-
ing these results one must bear in mind that most documents in the seminars
dataset provide only one, or maximum two, examples of each slot (the ratio
between number of documents and number of examples per slot in the corpus
ranges between 0.9 and 2). Therefore, in this case learning after 10 documents
is almost equivalent to learning from 10 to 15 examples per slot.

Another system which carried out such experiments on the seminars dataset
is (LP )2 [9]. Table 12 compares our system with the system based on (LP )2. In
a nutshell, our system is better than (LP )2 on the stime and speaker categories
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Table 12. Comparison of GATE-SVM with (LP )2: F1 (%) for each slot of the seminars
corpus and the macro averaged F1 for overall performance. The highest score on each
slot and overall performance appears in bold.

Number of training docs (LP )2 GATE-SVM
stime 30 84.0 88.9
etime 20 82.3 80.6
speaker 25 50.6 60.6
location 30 70.0 63.7
MA F1 71.7 73.5

but is worse on etime and location. The overall performance of our system is
slightly better than that of (LP )2.

5 Related Work

This section briefly discusses previous work on applying machine learning to IE,
in particular those systems which were evaluated on the three datasets used in
our experiments. We first describe the applications of SVM to IE. Then we look
at the other algorithms evaluated on the CoNLL-2003 dataset. Finally, the rule
learning and statistical learning IE systems on the seminar announcements and
job postings corpora are reviewed.

5.1 SVM-Based Systems

The SVM based system in [19] trained four SVM classifiers for each named
entity type – besides the two SVMs for start and end words like ours, one for
middle words, and one for single word entities. They also trained an extra SVM
classifier to recognize the words which do not belong to any named entity. [19]
used a sigmoid function to transfer the SVM output into a probability and then
applied the Viterbi algorithm to determine the optimal label sequence for a
sentence. The system was evaluated on a Japanese IE corpus. They used the
neighboring words with window size 2. Their experiments showed that the SVM
based system performed better than both maximum entropy and rule learning
systems on the same dataset using the same features. They also showed that
quadratic kernel was better than both linear and cubic kernels on their dataset.
[19] also described an efficient implementation of the SVM with quadratic kernel.

[22] used a lattice-based approach to named entity recognition and employed
SVM with cubic kernel to compute transition probabilities in a lattice. They
trained an SVM classifier for every possible transition of tags, meaning that
they may have a large number of SVM classifiers. They tested the system on the
CoNLL-2003 dataset using cubic kernel. They also took into account the features
from neighboring words with window size 3. Their result on the CoNLL-2003
corpus is comparable to ours (see Table 8). There are some other applications
of SVM for bio-named entity recognition (see e.g. [27]).
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5.2 Other Learning Methods Evaluated on the CONLL’2003
Corpus

CoNLL-2003 corpus is a typical named entity recognition corpus with newswire
articles and entity types similar to the earlier MUC-6 and MUC-7 corpora [24].
Sixteen systems participated in the evaluation. All of them were based on sta-
tistical learning, except one system which used rule learning as one of four algo-
rithms which were combined into one classifier. The system with the best score
was exactly this combined system, based on robust risk minimization, maximum
entropy, transformation based learning and HMMs, respectively (see [13].

Another system only based on maximum entropy obtained slightly worse
results (see [5]). They used many different features, including some genre-specific
one, such as the so-called zone related features which are dependent on the
structure of documents. Note that another two participating systems were also
only based on maximum entropy (see [1], [12]). In particular, the probability
discriminate model used in [12] was quite similar to the one in [5]. The features
used in [12] were general and less than those in [5]. Both the scores of these two
systems ([1] and [12]) were significantly worse than the system described in [5],
which confirms the conjecture that appropriate features are at least as important
as the learning algorithm.

The SVM based participating system was discussed above (see [22]).

5.3 Learning Systems Evaluated on Template Filling

SRV is a relational learning (or inductive logic programming) algorithm for IE,
which deduces a set of rules for one type of information entity from training
examples (see [15]). It checked every text fragments of appropriate size in doc-
ument in order to identify if the fragment belongs to an entity or not. [16,17]
tested SRV for IE on three datasets – the CMU seminars corpus, a collection of
600 newswire articles on corporate acquisitions from Reuters and a collection of
web pages of university computer science departments.

WHISK [26], another relational learning system for IE, was tested on col-
lections of structured, semi-structured and free-text documents, such as CNN
weather domain, seminar announcements, software jobs postings, and news story
articles. WHISK’s results on the seminars corpus were not as good as SRV’s,
which may be attributed to the fact that WHISK used less features – only the
token and its semantic class.

Rapier is also a rule based learning IE system (see [2]). It was tested on
two dataset: software jobs and seminar announcements. Its results on seminar
announcements are better than SRV.

BWI (Boosted Wrapper Induction) involved learning a wrapper (boundary
detector) for an information entity via a boosting procedure (see [18]). It was
evaluated on several collections such as seminar announcements, software job
postings, Reuters articles, and web pages. [18] also considered the neighboring
words as context and found, similar to us, that different datasets have a different
optimal window size. One should note that for rule based learning algorithms
the training time increases exponentially with window size.
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(LP )2 is also a rule learning algorithm for IE (see e.g. [7]). (LP )2 was tested
on three datasets: seminar announcements, software job postings, and a col-
lection of 103 web pages describing computer science courses (see [9]). It also
compared three different sets of features. The effect of window size on the dif-
ferent entity types was also studied [9].

[23] presented another relational learning based IE system, SNoW. It learned
rules via a multi-class classifier by looking at a target fragment and its left and
right windows. It was evaluated on the seminar announcements dataset.

[14] exploited a general statistical model, Hidden Markov Models (HMMs),
for IE. It also used the shrinkage technique to deal with data sparseness for
HMM parameter estimations. It was tested on two corpora, the seminar an-
nouncements, and a collection of newswire articles from Reuters. It used similar
experimental settings to SRV and obtained better results on the seminars corpus.

[4] used a probabilistic discriminate model for IE and used maximum entropy
for parameter estimations. It was tested on several corpora including seminar
announcements, the CoNLL-2003 corpus (see [5]) and the datasets from MUC-6
and MUC-7 (see [3]).

All previous work used features from a window surrounding the current word,
as well as features of the word itself. Both [18] and [7] investigated the effect
of window size on the performance of rule-based learning and noticed that the
computation times of both the rule learning algorithms BWI and (LP )2 increased
exponentially as the window size grew. On the other hand, the computation time
in an SVM based system only increases linearly with window size. Therefore, it
is easier for the SVM algorithm to select and use the optimal window size.

Basically the rule learning IE systems did not do any post-processing other
than simple consistency checking – they treated each type of entity separately.
The statistical learning algorithms compute a probability for each entity (or
transfer the output into a probability as in the SVM based IE algorithms),
such that they can select the best label for a fragment of text based on these
probabilities. In order to select the best labels for a sentence, a Viterbi-like search
algorithm was usually employed as a post-processor in the statistical learning
systems.

[2] and [7] also investigated the effects of growing quantities of training data.
[2] also considered active learning, where the system learns an initial model from
a small pool of annotated examples and then, based on the learned model, selects
additional examples for training.

6 Conclusions

This paper presents an SVM-based algorithm for IE and the experiments on three
benchmark datasets – the CoNLL-2003 dataset, the CMU seminars corpus, and
the software jobs corpus. The results show that our system is comparable to
other state of the art systems for IE.

While other SVM-based IE systems used the original SVM model which
treats the negative and positive margins equally, our system uses the SVM with
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uneven margins. Our experiments show that the uneven margins SVM performs
significantly better than the original SVM on the three datasets, particularly for
small training sets.

In comparison to other similar SVM-based algorithms, our system is simpler,
i.e., it needs a smaller number of SVM classifiers per entity type than the other
two systems discussed respectively in [19] and [22]. Our system also obtained
better results than the SVM-based system in [22] on the CoNLL-2003 corpus.

We investigated two weighting schemes for the features of the surrounding
words and showed that the reciprocal weighting scheme performs slightly better
than the commonly used equal weighting. We also investigated several post-
processing procedures, ranging from using the SVM outputs for begin and end
tags separately to selecting the highest probability label based on the output
of all SVM classifiers. We found that, while overall post-processing can improve
the results significantly, some of its stages only obtain small improvements.
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